Geometry (from the Ancient Greek: γεωμετρία; geo- "earth", -metron "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. While geometry has evolved significantly throughout the years, there are some general concepts that are fundamental to geometry. These include the concepts of point, line, plane, distance, angle, surface, and curve, as well as the more advanced notions of topology and manifold.

Property Value
dbo:abstract
  • La geometria (del grec γεωμετρία; γη = 'terra', μετρώ = 'mesurar') és la branca del coneixement que s'ocupa dels objectes o figures i de les seves relacions en l'espai, és a dir: distància, posició, superfície, volum, forma, desplaçament, projecció, representació, etc. Fou un dels dos camps de les matemàtiques clàssiques; l'altre camp n'és l'aritmètica o estudi dels nombres. A l'edat moderna, el filòsof René Descartes reformulà el concepte de coordenades cartesianes, el qual donà pas a la geometria analítica que va introduir els mètodes de càlcul algebraics en la geometria. Actualment, els conceptes geomètrics s'han generalitzat fins a assolir un elevat grau d'abstracció i complexitat, consegüentment podem parlar d'una "geometria tradicional" o "clàssica", que és la que tothom coneix, ja que s'ensenya a les escoles primàries. Les altres geometries, en general, són disciplines fonamentades, en part, en els conceptes en certa forma intuïtius de la geometria clàssica, a partir dels quals es formulen altres hipòtesis, es desenvolupen mètodes alternatius o s'estableixen vinculacions amb altres disciplines o matemàtiques. La s'ocupa de les figures i objectes que existeixen o podem imaginar, tant en el pla com en l'espai, així com de les seves principals relacions, aplicacions, extensions, etc., com són: * La forma de les figures, la seva generació i paràmetres. Per exemple: la circumferència es defineix com una corba tancada i plana, els punts de la qual equidisten d'un punt anomenat centre. * Les mesures sobre les figures com són la superfície, el volum o d'altres. Per exemple, el volum de l'esfera segons l'expressió: * Les relacions entre les figures com: distància, proporcions, igualtat o semblança, punts mitjans, bisectriu, etc. * Les operacions entre figures, o a partir de les figures com: paral·lelisme, perpendicularitat, simetria, homologia, unió, intersecció, etc. * Les aplicacions a la resolució de problemes entre figures o a partir de les figures, com trobar tangents comunes a dues circumferències, trobar la projecció sobre un pla, etc. Entre les aplicacions notables hi ha la resolució de triangles, en què a partir d'un costat i dos angles, dos costats i un angle o dels tres costats, es poden deduir els altres costats i angles. Aquesta aplicació és la base de la geodèsia i de la topografia. La geometria clàssica és euclidiana, anomenada així en honor del matemàtic grec Euclides, que formulà el famós cinquè postulat o postulat d'Euclides, en el qual es basa aquesta ciència. (ca)
  • Geometrie (řecky γεωμετρία, z gé – země a metria – měření) je matematická věda, která se zabývá otázkami tvarů, velikostí, proporcí a vzájemných vztahů obrazců a útvarů a vlastnostmi prostorů. Geometrie bývá považována za jeden z nejstarších vědních oborů vůbec. V Ottově slovníku naučném heslo Geometrie začíná slovy: Geometrie, měřičství, jest nauka o veličinách a útvarech prostorových. Pojmů těchto útvarů nabýváme abstrakcí z předmětů hmotných. Jednoduché geometrické útvary byly známy již v paleolitu a podrobněji zkoumány ve všech starověkých civilizacích. Geometrie sloužila původně pro praktické účely v zeměměřičství a stavebnictví. Na vědecké úrovni se jim poprvé věnovali staří Řekové. K slavným geometrickým problémům patřily otázky o konstruovatelnosti některých geometrických útvarů pomocí idealizovaného pravítka a kružítka. Ve středověku a raném novověku ovlivnilo studium astronomie rozvoj sférické geometrie a objevení perspektivy v malířství vznik projektivní geometrie. V 17. století René Descartes objevil souřadnice, což umožnilo vznik analytické geometrie a zkoumání geometrie algebraickými prostředky. V 19. století byl významný vznik neeukleidovských geometrií. Ve 20. století se o rozvoj geometrie zasloužili mj. čeští matematikové Eduard Čech, který se zabýval diferenciální geometrií, a Petr Vopěnka, který kromě teoretických prací napsal řadu popularizačních knih o . Geometrie má úzkou souvislost s algebrou a fyzikou. Riemannova geometrie popsaná v 19. století našla uplatnění jako model časoprostoru v Einsteinově obecné teorii relativity. V současnosti se geometrie pořád vyvíjí a to jak geometrie praktická (například a počítačová grafika), tak teoretická, která má úzkou souvislost s teoretickou fyzikou. (cs)
  • Γεωμετρία είναι ο κλάδος των μαθηματικών που ασχολείται με χωρικές σχέσεις, δηλαδή με τη σύνθεση του χώρου που ζούμε. Εμπειρικά, αλλά και διαισθητικά, οι άνθρωποι χαρακτηρίζουν τον χώρο μέσω συγκεκριμένων θεμελιωδών ιδιοτήτων, που ονομάζονται αξιώματα. Τα αξιώματα δε μπορούν να αποδειχτούν, αλλά μπορούν να χρησιμοποιηθούν σε συνδυασμό με για τα σημεία, τις ευθείες, τις καμπύλες, τις και τα για την εξαγωγή λογικών συμπερασμάτων. (el)
  • Geometrio (de la grekaj γης, "tero", kaj μετρoς, "mezuro") estas branĉo de matematiko kiu studas spacajn rilatojn (ekz. reciproka situo), formojn (ekz. geometriaj korpoj), grandojn kaj relativan situon de figuroj, kaj ilian ĝeneraligon. Naskiĝo de geometrio koncernas al tempoj de antikveco kaj estas kaŭzita pro la praktikaj bezonoj mezuri terpecojn, volumenon ktp. Geometro estas specialisto pri geometrio, nome fakulo pri geometrio, matematikisto kiu laboras en la kampo de geometrio. Geometrio stariĝis sendepende en nombraj fruaj kulturoj kiel korpuso de praktika sciaro koncerne al longoj, areoj, kaj volumenoj, kun elementoj de formala matematika scienco aperanta en Okcidento tiom frue kiom ĝis Taleso de Mileto (6a jarcento a.K.). Poste la strikta konstruo de geometrio, kiel sistemo de asertoj (teoremo), konsekvence sinsekvaj el nemultaj difinoj de ĉefaj nocioj kaj veraĵoj, akceptitaj sen pruvo (aksiomo), estis donita en antikva Grekio. Tia traktado de geometrio en la “Komencoj” de Eŭklido (ĉ. 300 a.K.), dum preskaŭ 2 mil jaroj servis kiel modelo por aksioma metodo kaj baza konstruo de t.n. "Eŭklida geometrio" sekvota dum multaj jarcentoj. Arkimedo disvolvigis ingeniajn teknikojn por la kalkulado de areoj kaj volumenoj, en multaj manieroj pionire de la moderna integrala kalkulo. La fako astronomio, ĉefe ĉar ĝi rilatas al mapado kaj al la situoj de steloj kaj planedoj en la ĉielosfero kaj al priskribado de rilatoj inter movoj de ĉielaj korpoj, utilis kiel grava fonto de geometriaj problemoj dum la venontaj unu kaj duona jarmiloj. En la klasika mondo, kaj geometrio kaj astronomio esris konsiderataj parto de Quadrivium, subfako de la sep Sep liberaj artoj konsideritaj esencaj por ke libera civitano mastru. La reviviĝo de la scienco kaj arto en Eŭropo stimulis evoluon de geometrio, kies teoria bazo estis Projekta Geometrio. Kartezio (Rene Descartes) proponis metodon de koordinatoj, kiu permesis interligi geometrion kun algebro kaj matematika analizo, rezultanta naskon de analiza geometrio kaj diferenciala geometrio. De tiam geometriaj figuroj kiaj ebenaj kurboj estos reprezentataj analize en la formo de funkcioj kaj ekvacioj, Tio ludis ŝlosilan rolon en la apero de la infinitezima kalkulo en la 17a jarcento. Krome, la teorio de perspektivoj montris, ke estas pli al geometrio ol ĝuste la mezuraj propraĵoj de figuroj: perspektivo estas la origino de . La subjekto de geometrio estis plue pliriĉigita per la studo de la esenca strukturo de geometriaj objektoj kiuj originiĝis ĉe Euler kaj Gauss kaj kondukis al la kreado de la topologio kaj de la diferenciala geometrio. En la epoko de Eŭklido, ne estis klara distingo inter fizika kaj geometria spacoj. Ekde la 19a-jarcenta malkovro de ne-Eŭklida geometrio, la koncepto de spaco suferis radikalan transformadon kaj levigis la demandon pri kiu geometria spaco ple bone kongrus kun fizika spaco. En 1826 N. Lobaĉevskij konstruis , diferencantan de la eŭklida geometrio per la aksiomo pri paraleloj. En la mezo de 19-a jarcento estis esploritaj multmezuraj spacoj. Vasta fako de geometrio estis fondita en la verkoj de B. Riemann. La ĝeneraligo de la ĉefobjekto de geometrio - spaco, ebligis ĝian fruktodonan uzadon ne nur en matematikaj sciencoj, sed ankaŭ en fiziko, mekaniko k.a. Kun la apero de la formala matematiko en la 20a jarcento, 'spaco' (ĉu 'punkto', 'linio', aŭ 'surfaco') perds sian intuiciajn enhavojn, kaj tiele nuntempe oni devas distingi inter fizika spaco, geometriaj spacoj (en kiuj 'spaco', 'punkto' ktp., kiuj ankoraŭ havas sian intuiciajn signifojn) kaj abstraktaj spacoj. Nuntempa geometrio konsideras sternaĵojn, nom spacojn kiuj estas konsiderinde pli abstraktaj ol la familiara Eŭklida spaco, al kiu ili nur proksimume similas je malgrandaj skaloj. Tiuj spacoj povas esti dotitaj per aldona strukturo kiu permesas onin paroli pri longo. Moderna geometrio havas multaj ligojn al fiziko kiel estas ekzempligita de la ligoj intee la pseŭdo-Riemannian-a geometrio kaj la ĝenerala teorio de relativeco. Unu el la plej novaj fizikaj teorioj, nome la Kordoteorio, estas ankaŭ tre geometrieca. Dum la vida naturo de geometrio faras ĝin dekomence pli alirebla ol aliaj matematikaj areoj kiaj algebro aŭ Nombroteorio, geometria lingvaĵo estas uzata ankaŭ en kuntekstoj tre foraj el sia tradicia eŭklida deveno (por ekzemplo, ĉe fraktala geometrio kaj ĉe algebra geometrio). (eo)
  • Die Geometrie (altgriechisch γεωμετρία geometria, ionisch γεωμετρίη geometriē, ‚Erdmaße‘, ‚Erdmessung‘, ‚Landmessung‘) ist ein Teilgebiet der Mathematik. Einerseits versteht man unter Geometrie die zwei- und dreidimensionale euklidische Geometrie, die Elementargeometrie, die auch im Schulunterricht – früher unter dem Begriff Raumlehre – gelehrt wird und die sich mit Punkten, Geraden, Ebenen, Abständen, Winkeln usw. beschäftigt, sowie diejenigen Begriffsbildungen und Methoden, die im Zuge einer systematischen und mathematischen Behandlung dieses Themas entwickelt wurden. Andererseits umfasst der Begriff Geometrie eine Reihe von großen Teilgebieten der Mathematik, deren Bezug zur Elementargeometrie für Laien nur mehr schwer erkennbar ist. Dies gilt insbesondere für den modernen Begriff der Geometrie, der im Allgemeinen die Untersuchung invarianter Größen bezeichnet. (de)
  • La geometría (del latín geometrĭa, y este del griego γεωμετρία de γῆ gē, ‘tierra’, y μετρία metría, ‘medida’) es una rama de las matemáticas que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio,​ incluyendo: puntos, rectas, planos, politopos (que incluyen paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.). Es la base teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales). Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica, arquitectura, geografía, cartografía, astronomía, náutica, topografía, balística etc., y es útil en la preparación de diseños e incluso en la fabricación de artesanía. (es)
  • Geometria (grezieraz γεωμετρία, geo = lurra, metria = neurtu) gorputzen tamaina, forma eta posizio erlatibo eta espazioaren propietateez arduratzen den matematikaren ataletako bat da. Geometria zientziarik zaharrenetariko bat da. Hasiera batean luzera, azalera eta bolumenaren inguruan kezkatzen zen, baina K.a. III. mendetik aurrera Euklidesek axioma ezberdinak proposatu zituenetik mendetan zehar estandar hauetan oinarritu da. Astronomiak eman zuen hurrengo milurteko eta erdian buruhauste geometriko nagusia. Rene Descartesek koordenatuak sartu zituenetik, aljebraren garapenarekin batera, geometria beste garai batean sartu zen. erabiliz deskribatu ahal ziren, adibidez, funtzio eta ekuazioak erabiliz. Honek paper garrantzitsua jokatu zuen kalkuluaren sorreran XVII. mendean. Are eta gehiago, perspektibaren teoriak argi utzi zuen geometria badela gorputzen eta formen propietate metrikoak baino zerbait gehiago. Geometriaren gaiak oraindik aberatsago egin ziren hainbat gorputz geometrikoren berezko egitura ikertuz, eta alor honetan Euler eta Gaussek eginiko lanek topologia eta geometria diferentziala sorrarazi zituzten. XIX. mendean aurkitu zenean espazioren kontzeptuak aldaketa izugarria jasan zuen. Gaur egungo geometriak tolesak eta lokarriak ere aintzat hartzen ditu, euklidear espazioa baino abstraktuagoak diren objektuak, eta eskala txikietan baina geometria klasikoaren itxura duten objektuak ere ikertzen ditu. Gaur egungo geometriak harreman handia du fisikarekin, batez ere eta erlatibitate orokorraren artean. Fisikaren teoriarik berrienetako bat ere, korden teoria, oso geometrikoa da azken finean. Geometria irudi bidez adierazgarria izateak matematikaren beste atalak baino ulergarriagoa egiten du, batez ere aljebra edo zenbakien teoriarekin alderatuta. Hala ere, hizkera geometrikoa normalean ohituak gauden esparruetatik at ere mugitzen da, adibidez geometria fraktalean eta batez ere geometria aljebraikoan. (eu)
  • Brainse den mhatamaitic a dhéanann staidéar ar thréithe cruthanna is spáis, agus an Domhain ar dtús is ea geoiméadracht. Timpeall 2000 RC bhí eolas ag na Bablónaigh ar na rialacha chun fairsingí dronuilleog, triantán dronuillinne is triantán comhchosach a ríomh. Ghlac siad leis gurbh ionann imlíne (C) ciorcail de thrastomhas d le 3⅛ d, agus a fhairsinge le ⅓ (½ C)2. Roinn siad imlíne an chiorcail i 360 cuid chomhionann, agus shaothraigh siad cuid mhaith eolais gheoiméadraigh. Bhí an t-eolas seo ag na hÉigiptigh freisin, ach ba iad na Gréagaigh a bhunaigh an gheoiméadracht loighciúil timpeall 300 RC. Bhailigh Eoiclídéas na buntorthaí ina imleabhair den Uraiceacht, ag leagan amach na dteoirimí is na gcruthuithe orthu in ord loighciúil, ag tosú le bunaicsímí nó buntairiscintí trí chéimeanna a lean a chéile, ag forbairt na gcruthuithe a sheasann fós tar éis 2,000 bliain. Ón 18ú céad anuas forbraíodh geoiméadrachtaí teibí, agus luaitear saothar is leis seo. (ga)
  • La géométrie est à l'origine la partie des mathématiques qui étudie les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du XVIIIe siècle, la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne, par exemple). Depuis le début du XXe siècle, certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique, par exemple. Si l'on veut englober toutes ces acceptions, il est difficile de définir ce qu'est, aujourd'hui, la géométrie. C'est que l'unité des diverses branches de la « géométrie contemporaine » réside plus dans des origines historiques que dans une communauté de méthodes ou d'objets. (fr)
  • Geometri (Yunani Kuno: γεωμετρία, geo-"bumi",-metron "pengukuran"), ilmu ukur, atau ilmu bangun adalah cabang matematika yang bersangkutan dengan pertanyaan bentuk, ukuran, posisi relatif gambar, dan . Seorang ahli matematika yang bekerja di bidang geometri disebut ahli geometri. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang panjang, luas, dan volume, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini Thales (abad 6 SM). Pada abad ke-3 SM geometri dimasukkan ke dalam bentuk aksiomatik oleh Euclid, yang dibantu oleh geometri Euclid, menjadi standar selama berabad-abad. Archimedes mengembangkan teknik cerdik untuk menghitung luas dan isi, dalam banyak cara mengantisipasi kalkulus integral yang modern. Bidang astronomi, terutama memetakan posisi bintang dan planet pada falak dan menggambarkan hubungan antara gerakan benda langit, menjabat sebagai sumber penting masalah geometrik selama satu berikutnya dan setengah milenium. Kedua geometri dan astronomi dianggap di dunia klasik untuk menjadi bagian dari Quadrivium tersebut, subset dari tujuh seni liberal dianggap penting untuk warga negara bebas untuk menguasai. Pengenalan koordinat oleh René Descartes dan perkembangan bersamaan aljabar menandai tahap baru untuk geometri, karena tokoh geometris, seperti , sekarang bisa diwakili analitis, yakni dengan fungsi dan persamaan. Hal ini memainkan peran penting dalam munculnya kalkulus pada abad ke-17. Selanjutnya, teori perspektif menunjukkan bahwa ada lebih banyak geometri dari sekadar sifat metrik angka: perspektif adalah asal geometri proyektif. Subyek geometri selanjutnya diperkaya oleh studi struktur intrinsik benda geometris yang berasal dengan Euler dan Gauss dan menyebabkan penciptaan topologi dan geometri diferensial. Dalam waktu Euclid tidak ada perbedaan yang jelas antara ruang fisik dan ruang geometris. Sejak penemuan abad ke-19 geometri non-Euclid, konsep ruang telah mengalami transformasi radikal, dan muncul pertanyaan: mana ruang geometris paling sesuai dengan ruang fisik? Dengan meningkatnya matematika formal dalam abad ke-20, juga 'ruang' (dan 'titik', 'garis', 'bidang') kehilangan isi intuitif, jadi hari ini kita harus membedakan antara ruang fisik, ruang geometris (di mana ' ruang ',' titik 'dll masih memiliki arti intuitif mereka) dan ruang abstrak. Geometri kontemporer menganggap manifold, ruang yang jauh lebih abstrak dari ruang Euclid yang kita kenal, yang mereka hanya sekitar menyerupai pada skala kecil. Ruang ini mungkin diberkahi dengan struktur tambahan, yang memungkinkan seseorang untuk berbicara tentang panjang. Geometri modern memiliki ikatan yang kuat dengan beberapa fisika, dicontohkan oleh hubungan antara geometri pseudo-Riemann dan relativitas umum. Salah satu teori fisika termuda, teori string, juga sangat geometris dalam rasa. Sedangkan sifat visual geometri awalnya membuatnya lebih mudah diakses daripada bagian lain dari matematika, seperti aljabar atau teori bilangan, bahasa geometrik juga digunakan dalam konteks yang jauh dari tradisional, asal Euclidean nya (misalnya, dalam geometri fraktal dan geometri aljabar) (in)
  • 幾何学(きかがく、古代ギリシア語: γεωμετρία)は、図形や空間の性質について研究する数学の分野である。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達し、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパでユークリッド幾何学を発端とする様々な幾何学が登場した。 単に幾何学と言うと、ユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学をさすことが多く、一般にも馴染みが深いが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 「幾何学」という語は、イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 (ja)
  • La geometria (dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni. (it)
  • Geometry (from the Ancient Greek: γεωμετρία; geo- "earth", -metron "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of formal mathematical science emerging in Greek mathematics as early as the 6th century BC. By the 3rd century BC, geometry was put into an axiomatic form by Euclid, whose treatment, The Elements, set a standard for many centuries to follow. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC. Islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid analytic footing by mathematicians such as René Descartes and Pierre de Fermat. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, describing spaces that lie beyond the normal range of human experience. While geometry has evolved significantly throughout the years, there are some general concepts that are fundamental to geometry. These include the concepts of point, line, plane, distance, angle, surface, and curve, as well as the more advanced notions of topology and manifold. Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. (en)
  • 기하학(幾何學, 그리스어: γεωμετρία, 영어: geometry)은 공간에 있는 도형의 성질 즉, 대상들의 치수, 모양, 상대적 위치 등을 연구하는 수학의 한 분야이다. 기하학이 다루는 대상으로는 점, 선, 면, 도형, 공간과 같은 것이 있다. (ko)
  • De meetkunde of geometrie (van Oudgrieks: γεωμετρία, γῆ "aarde", μέτρον "maat"), het "meten van de aarde", is het onderdeel van de wiskunde, dat zich bezighoudt met het bepalen van afmetingen, vormen, de relatieve positie van figuren en de eigenschappen van de ruimte. De specifiek Nederlandse term meetkunde werd rond 1600 door de Vlaamse wiskundige Simon Stevin geïntroduceerd. Een wiskundige die op het gebied van de meetkunde werkt, wordt een meetkundige genoemd. De meetkunde is een van de oudste wetenschappen. Aanvankelijk begonnen als een geheel van praktische kennis over lengten, oppervlakten en volumen werd de meetkunde in de 3e eeuw v.Chr. door Euclides van Alexandrië van een axiomatisch fundament voorzien. Al in het klassieke Griekenland werden de eerste axioma's geformuleerd (waaronder de postulaten van Euclides), waar later de gehele meetkunde zich uit heeft ontwikkeld. De axioma's werden gebruikt voor de wiskundige definitie van punten, rechte lijnen, krommen en vlakken. Euclides' behandeling van de meetkunde – de euclidische meetkunde – was bijna 2000 jaar de norm, waaraan al het andere werk werd afgemeten. (nl)
  • Geometria (gr. γεωμετρία; geo – ziemia, metria – miara) – dziedzina matematyki badająca dla wybranych przekształceń ich niezmienniki, od najprostszych, takich jak odległość, pole powierzchni, miara kąta, przez bardziej zaawansowane, jak krzywizna, punkt stały, czy wymiar. W zależności od rodzaju przekształceń mówi się o różnych rodzajach geometrii. Geometria euklidesowa zajmuje się przede wszystkim badaniem niezmienników (stałych) izometrii (zachowanie odległości) oraz podobieństw (zachowanie kątów), geometria afiniczna bada niezmienniki przekształceń afinicznych, zaś geometria rzutowa opisuje niezmienniki przekształceń rzutowych. Problemy te uogólnia się na inne przestrzenie i obiekty (np. przestrzeń Riemanna, czy przestrzenie metryczne), a metoda badania niezmienników jest podstawową metodą badania bardziej zaawansowanych obiektów matematycznych (np. przestrzenie topologiczne, abstrakcyjne grupy, pierścienie, itp.) Geometria, podobnie jak arytmetyka należy do najstarszych nauk. Podobnie jak inne działy matematyki geometria wyewoluowała od badania kształtów znanych z codziennego życia do studiów nad nieskończenie wymiarowymi abstrakcyjnymi przestrzeniami matematycznymi. (pl)
  • Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий. Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор. (ru)
  • A geometria (em grego antigo: γεωμετρία; geo- "terra", -metria "medida") é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras e com as propriedades dos espaços. Um matemático que trabalha no campo da geometria é denominado de geômetra. A geometria surgiu independentemente em várias culturas antigas como um conjunto de conhecimentos práticos sobre comprimento, área e volume, sendo que o aparecimento de elementos de uma ciência matemática formal é no mínimo tão antigo quanto Tales (século VI A.C.). Por volta do século III a.C., a geometria foi posta em uma forma axiomática por Euclides, cujo tratamento, chamado de geometria euclidiana, estabeleceu um padrão que perdurou por séculos. Arquimedes desenvolveu técnicas engenhosas para calcular áreas e volumes, antecipando em várias maneiras o moderno cálculo integral. A partir da experiência, ou, eventualmente, intuitivamente, as pessoas caracterizam o espaço por certas qualidades fundamentais, que são denominadas axiomas de geometria (como, por exemplo, os axiomas de Hilbert). Esses axiomas não são provados, mas podem ser usados em conjunto com os conceitos matemáticos de ponto, linha reta, linha curva, superfície e sólido para chegar a conclusões lógicas, chamadas de teoremas. A influência da geometria sobre as ciências físicas foi enorme. Como exemplo, quando o astrônomo Kepler mostrou que as relações entre as velocidades máximas e mínimas dos planetas, propriedades intrínsecas das órbitas, estavam em razões que eram harmônicas — relações musicais —, ele afirmou que essa era uma música que só podia ser percebida com os ouvidos da alma — a mente do geômetra. Com a introdução do plano cartesiano, muitos problemas de outras áreas da matemática, como álgebra, puderam ser transformados em problemas de geometria (e vice-versa), muitas vezes conduzindo à simplificação das soluções. (ver geometria analítica) (pt)
  • Geometri (grekiska: γεωμετρια geometria, av γεω geo ”jord”, och μετρια metria ”mäta”) är en gren av matematiken där man studerar vilka egenskaper figurer har i ett rum eller, mer generellt, rumsliga samband. Geometrin var en av de två ursprungliga matematiska disciplinerna vid sidan av talteorin, det vill säga studiet av talen. I modern tid har geometrin generaliserats till en hög abstraktionsnivå och komplexitet. Många av dess grenar berörs idag av matematisk analys och abstrakt algebra och kan vara mycket svåra att känna igen som ättlingar till den tidigaste geometrin. Beroende på vilka axiom man utgår ifrån får man olika geometrier, det vill säga geometriska teorier. (sv)
  • Геоме́трія (від дав.-гр. γη — Земля і μετρέω — вимірюю; землеміряння) — розділ математики, наука про просторові форми, відносини і їхні узагальнення. (uk)
  • 幾何學(英语:Geometry,古希臘語:γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 18973446 (xsd:integer)
dbo:wikiPageLength
  • 82170 (xsd:integer)
dbo:wikiPageRevisionID
  • 981490253 (xsd:integer)
dbo:wikiPageWikiLink
dbp:about
  • yes (en)
dbp:by
  • no (en)
dbp:date
  • September 2020 (en)
dbp:label
  • Geometry (en)
dbp:onlinebooks
  • no (en)
dbp:others
  • no (en)
dbp:reason
  • this contradicts the assertion that non-Euclidean geometry was discovered only in the 19th century (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Γεωμετρία είναι ο κλάδος των μαθηματικών που ασχολείται με χωρικές σχέσεις, δηλαδή με τη σύνθεση του χώρου που ζούμε. Εμπειρικά, αλλά και διαισθητικά, οι άνθρωποι χαρακτηρίζουν τον χώρο μέσω συγκεκριμένων θεμελιωδών ιδιοτήτων, που ονομάζονται αξιώματα. Τα αξιώματα δε μπορούν να αποδειχτούν, αλλά μπορούν να χρησιμοποιηθούν σε συνδυασμό με για τα σημεία, τις ευθείες, τις καμπύλες, τις και τα για την εξαγωγή λογικών συμπερασμάτων. (el)
  • 幾何学(きかがく、古代ギリシア語: γεωμετρία)は、図形や空間の性質について研究する数学の分野である。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達し、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパでユークリッド幾何学を発端とする様々な幾何学が登場した。 単に幾何学と言うと、ユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学をさすことが多く、一般にも馴染みが深いが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 「幾何学」という語は、イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 (ja)
  • La geometria (dal greco antico "γεωμετρία", composto dal prefisso geo che rimanda alla parola γή = "terra" e μετρία, metria = "misura", tradotto quindi letteralmente come misurazione della terra) è quella parte della scienza matematica che si occupa delle forme nel piano e nello spazio e delle loro mutue relazioni. (it)
  • 기하학(幾何學, 그리스어: γεωμετρία, 영어: geometry)은 공간에 있는 도형의 성질 즉, 대상들의 치수, 모양, 상대적 위치 등을 연구하는 수학의 한 분야이다. 기하학이 다루는 대상으로는 점, 선, 면, 도형, 공간과 같은 것이 있다. (ko)
  • Geometri (grekiska: γεωμετρια geometria, av γεω geo ”jord”, och μετρια metria ”mäta”) är en gren av matematiken där man studerar vilka egenskaper figurer har i ett rum eller, mer generellt, rumsliga samband. Geometrin var en av de två ursprungliga matematiska disciplinerna vid sidan av talteorin, det vill säga studiet av talen. I modern tid har geometrin generaliserats till en hög abstraktionsnivå och komplexitet. Många av dess grenar berörs idag av matematisk analys och abstrakt algebra och kan vara mycket svåra att känna igen som ättlingar till den tidigaste geometrin. Beroende på vilka axiom man utgår ifrån får man olika geometrier, det vill säga geometriska teorier. (sv)
  • Геоме́трія (від дав.-гр. γη — Земля і μετρέω — вимірюю; землеміряння) — розділ математики, наука про просторові форми, відносини і їхні узагальнення. (uk)
  • La geometria (del grec γεωμετρία; γη = 'terra', μετρώ = 'mesurar') és la branca del coneixement que s'ocupa dels objectes o figures i de les seves relacions en l'espai, és a dir: distància, posició, superfície, volum, forma, desplaçament, projecció, representació, etc. Fou un dels dos camps de les matemàtiques clàssiques; l'altre camp n'és l'aritmètica o estudi dels nombres. La s'ocupa de les figures i objectes que existeixen o podem imaginar, tant en el pla com en l'espai, així com de les seves principals relacions, aplicacions, extensions, etc., com són: (ca)
  • Geometrie (řecky γεωμετρία, z gé – země a metria – měření) je matematická věda, která se zabývá otázkami tvarů, velikostí, proporcí a vzájemných vztahů obrazců a útvarů a vlastnostmi prostorů. Geometrie bývá považována za jeden z nejstarších vědních oborů vůbec. V Ottově slovníku naučném heslo Geometrie začíná slovy: Geometrie, měřičství, jest nauka o veličinách a útvarech prostorových. Pojmů těchto útvarů nabýváme abstrakcí z předmětů hmotných. (cs)
  • Die Geometrie (altgriechisch γεωμετρία geometria, ionisch γεωμετρίη geometriē, ‚Erdmaße‘, ‚Erdmessung‘, ‚Landmessung‘) ist ein Teilgebiet der Mathematik. Einerseits versteht man unter Geometrie die zwei- und dreidimensionale euklidische Geometrie, die Elementargeometrie, die auch im Schulunterricht – früher unter dem Begriff Raumlehre – gelehrt wird und die sich mit Punkten, Geraden, Ebenen, Abständen, Winkeln usw. beschäftigt, sowie diejenigen Begriffsbildungen und Methoden, die im Zuge einer systematischen und mathematischen Behandlung dieses Themas entwickelt wurden. (de)
  • Geometrio (de la grekaj γης, "tero", kaj μετρoς, "mezuro") estas branĉo de matematiko kiu studas spacajn rilatojn (ekz. reciproka situo), formojn (ekz. geometriaj korpoj), grandojn kaj relativan situon de figuroj, kaj ilian ĝeneraligon. Naskiĝo de geometrio koncernas al tempoj de antikveco kaj estas kaŭzita pro la praktikaj bezonoj mezuri terpecojn, volumenon ktp. Geometro estas specialisto pri geometrio, nome fakulo pri geometrio, matematikisto kiu laboras en la kampo de geometrio. (eo)
  • La geometría (del latín geometrĭa, y este del griego γεωμετρία de γῆ gē, ‘tierra’, y μετρία metría, ‘medida’) es una rama de las matemáticas que se ocupa del estudio de las propiedades de las figuras en el plano o el espacio,​ incluyendo: puntos, rectas, planos, politopos (que incluyen paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc.). (es)
  • Geometria (grezieraz γεωμετρία, geo = lurra, metria = neurtu) gorputzen tamaina, forma eta posizio erlatibo eta espazioaren propietateez arduratzen den matematikaren ataletako bat da. Geometria zientziarik zaharrenetariko bat da. Hasiera batean luzera, azalera eta bolumenaren inguruan kezkatzen zen, baina K.a. III. mendetik aurrera Euklidesek axioma ezberdinak proposatu zituenetik mendetan zehar estandar hauetan oinarritu da. Astronomiak eman zuen hurrengo milurteko eta erdian buruhauste geometriko nagusia. (eu)
  • Geometry (from the Ancient Greek: γεωμετρία; geo- "earth", -metron "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer. While geometry has evolved significantly throughout the years, there are some general concepts that are fundamental to geometry. These include the concepts of point, line, plane, distance, angle, surface, and curve, as well as the more advanced notions of topology and manifold. (en)
  • La géométrie est à l'origine la partie des mathématiques qui étudie les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du XVIIIe siècle, la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne, par exemple). (fr)
  • Brainse den mhatamaitic a dhéanann staidéar ar thréithe cruthanna is spáis, agus an Domhain ar dtús is ea geoiméadracht. Timpeall 2000 RC bhí eolas ag na Bablónaigh ar na rialacha chun fairsingí dronuilleog, triantán dronuillinne is triantán comhchosach a ríomh. Ghlac siad leis gurbh ionann imlíne (C) ciorcail de thrastomhas d le 3⅛ d, agus a fhairsinge le ⅓ (½ C)2. Roinn siad imlíne an chiorcail i 360 cuid chomhionann, agus shaothraigh siad cuid mhaith eolais gheoiméadraigh. Bhí an t-eolas seo ag na hÉigiptigh freisin, ach ba iad na Gréagaigh a bhunaigh an gheoiméadracht loighciúil timpeall 300 RC. (ga)
  • Geometri (Yunani Kuno: γεωμετρία, geo-"bumi",-metron "pengukuran"), ilmu ukur, atau ilmu bangun adalah cabang matematika yang bersangkutan dengan pertanyaan bentuk, ukuran, posisi relatif gambar, dan . Seorang ahli matematika yang bekerja di bidang geometri disebut ahli geometri. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang panjang, luas, dan volume, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini Thales (abad 6 SM). Pada abad ke-3 SM geometri dimasukkan ke dalam bentuk aksiomatik oleh Euclid, yang dibantu oleh geometri Euclid, menjadi standar selama berabad-abad. Archimedes mengembangkan teknik cerdik untuk menghitung luas dan isi, dalam banyak cara mengantisipasi kalkulus integral yang modern. Bidang astrono (in)
  • Geometria (gr. γεωμετρία; geo – ziemia, metria – miara) – dziedzina matematyki badająca dla wybranych przekształceń ich niezmienniki, od najprostszych, takich jak odległość, pole powierzchni, miara kąta, przez bardziej zaawansowane, jak krzywizna, punkt stały, czy wymiar. W zależności od rodzaju przekształceń mówi się o różnych rodzajach geometrii. (pl)
  • De meetkunde of geometrie (van Oudgrieks: γεωμετρία, γῆ "aarde", μέτρον "maat"), het "meten van de aarde", is het onderdeel van de wiskunde, dat zich bezighoudt met het bepalen van afmetingen, vormen, de relatieve positie van figuren en de eigenschappen van de ruimte. De specifiek Nederlandse term meetkunde werd rond 1600 door de Vlaamse wiskundige Simon Stevin geïntroduceerd. Een wiskundige die op het gebied van de meetkunde werkt, wordt een meetkundige genoemd. (nl)
  • A geometria (em grego antigo: γεωμετρία; geo- "terra", -metria "medida") é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras e com as propriedades dos espaços. Um matemático que trabalha no campo da geometria é denominado de geômetra. A geometria surgiu independentemente em várias culturas antigas como um conjunto de conhecimentos práticos sobre comprimento, área e volume, sendo que o aparecimento de elementos de uma ciência matemática formal é no mínimo tão antigo quanto Tales (século VI A.C.). Por volta do século III a.C., a geometria foi posta em uma forma axiomática por Euclides, cujo tratamento, chamado de geometria euclidiana, estabeleceu um padrão que perdurou por séculos. Arquimedes desenvolveu técnicas engenhosas para calcular áreas e vo (pt)
  • Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и со (ru)
  • 幾何學(英语:Geometry,古希臘語:γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 (zh)
rdfs:label
  • Geometry (en)
  • Geometria (ca)
  • Geometrie (cs)
  • Geometrie (de)
  • Γεωμετρία (el)
  • Geometrio (eo)
  • Geometría (es)
  • Geometria (eu)
  • Géométrie (fr)
  • Geoiméadracht (ga)
  • Geometri (in)
  • Geometria (it)
  • 幾何学 (ja)
  • 기하학 (ko)
  • Geometria (pl)
  • Meetkunde (nl)
  • Geometria (pt)
  • Геометрия (ru)
  • Geometri (sv)
  • Геометрія (uk)
  • 几何学 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:influenced of
is dbo:knownFor of
is dbo:literaryGenre of
is dbo:mainInterest of
is dbo:nonFictionSubject of
is dbo:occupation of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:discipline of
is dbp:field of
is dbp:fields of
is dbp:genre of
is dbp:influenced of
is dbp:knownFor of
is dbp:mainInterests of
is dbp:movement of
is dbp:namedAfter of
is dbp:occupation of
is dbp:practiceEmphases of
is dbp:subDiscipline of
is dbp:subject of
is foaf:primaryTopic of