In geometry, the midpoint theorem describes a property of parallel chords in a conic. It states that the midpoints of parallel chords in a conic are located on a common line. The common line (segment) for the midpoints is also called the diameter of a conic. For a circle, ellipse or hyperbola the diameter goes through its center. For a parabola the diameter is always perpendicular to its directrix and for a pair of intersecting lines the diameter goes through the point of intersection. * hyperbola * circle * ellipse * parabola * intersecting lines
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction |
|
foaf:isPrimaryTopicOf | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |