In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or ) represents the golden ratio. It is an irrational number that is a solution to the quadratic equation , with a value of:

Property Value
dbo:abstract
  • النسبة الذهبية (بالإنجليزية: Golden Ratio) في الرياضيات تحقق عندما يكون مجموع عددين مقسوم على أكبرهما يساوي خارج قسمة أكبر العددين على أصغرهما. إذا كان a أكبر من b فإن النسبة الذهبية هي تحقق: وهو ثابت رياضي معرف تبلغ قيمته 1.6180339887 تقريبا. لو نُظر إلى مستطيلات مختلفة، لوُجد بعضها أجمل من الآخر. وفي معظم الأحيان تكون نسبة أبعاد هذه المستطيلات بعضها إلى بعض هي نفسها. وتسمى هذه المستطيلات "المستطيلات الذهبية" وخارج قسمة طولها على عرضها يسمى "الرقم الذهبي". فنجد أنه في المستطيل الذهبي نسبة الطول إلى العرض تساوي . وجرت العادة أن يكتب الرقم الذهبي باعتماد الحرف الاغريقي "في" أو . وقد ظهرت هذه التسمية سنة 1914 وفاء لذكرى "فيدياس"، وهو نحّات قام بتزيين "البارثينون" في أثينا. ويظهر الرقم الذهبي أيضا في أشكال هندسية أخرى منها خماسي الأضلاع المنتظم، وهو شكل هندسي ذو خمس أضلاع محتوى في دائرة، و أضلاعه وزواياه كلها متقايسة. وفي هذا الشكل يمثل خارج قسمة القطر على أحد الأضلاع الرقم الذهبي وهو عرضة للتشكيك في كثير من الأحيان من حيث أن أرقام مشابهة تكون موجودة ويتم الترويج إلى أن الرقم موجود بذاته او أن الرقم لا يكون موجوداً في حالات كثيرة ويُدعى أنه موجود. (ar)
  • La raó àuria,nombre auri, secció àuria o divina proporció és la raó entre dos segments a i b (o per extensió, entre dues quantitats a i b) que compleixen la condició que la raó entre la suma d'aquests dos segments i el segment major és la mateixa raó que hi ha entre el segment major i el segment menor. Dit en altres paraules, la suma dels dos segments és al segment major com el segment major és al segment menor. Anomenant a el segment (o nombre) major i b el menor, la formulació matemàtica de la definició es pot escriure com: El quocient d'aquestes dues quantitats resulta ser un nombre irracional conegut com a nombre auri o nombre d'or, i designat habitualment per la lletra grega simbolitzada com: Φ o també φ (fi) en honor a Fídies, escultor i arquitecte grec del Partenó, o menys sovint amb τ (tau): Les formes definides amb la raó àuria han estat molt sovint considerades estèticament agradables en la cultura d'Occident, de manera que la proporció divina s'ha usat sovint al llarg de la història en l'art i el disseny. Òbviament, també s'ha usat la inversa de la raó àuria Φ-1. A vegades, s'utilitza la fi minúscula (φ) per a aquest valor quan s'utilitza la majúscula per a l'anterior. Però la raó àuria també és coneguda perquè la trobem en la natura, i és possiblement el fet que aparegui en els llocs més insospitats, conjuntament amb una sèrie de curioses propietats matemàtiques, el que ha fet que rebés la qualificació metafòrica de "proporció divina". (ca)
  • Jako zlatý řez (latinsky sectio aurea) se označuje poměr o hodnotě přibližně 1,618. V umění a fotografii je pokládán za ideální proporci mezi různými délkami. Zlatý řez vznikne rozdělením úsečky na dvě části tak, že poměr větší části k menší je stejný jako poměr celé úsečky k větší části. Hodnota tohoto poměru je rovna iracionálnímu číslu Již nejméně od renesance využívají zlatý řez umělci ve svých dílech, zejména ve formě tzv. zlatého obdélníku, ve kterém se zlatý řez vyskytuje jako poměr stran. Zlatý řez prý totiž působí esteticky příznivým dojmem; poměr zlatého řezu lze také pozorovat v přírodě. Značení písmenem φ začal na počátku 20. století používat , přičemž je zvolil na počest řeckého sochaře Feidia (cca 490–430 př. n. l.), který podle historiků ve svých dílech zlatý řez hojně využíval. Občas se používá také označení z řeckého tome = řez. (cs)
  • Als Goldener Schnitt (lateinisch sectio aurea, proportio divina) wird das Teilungsverhältnis einer Strecke oder anderen Größe bezeichnet, bei dem das Verhältnis des Ganzen zu seinem größeren Teil (auch Major genannt) dem Verhältnis des größeren zum kleineren Teil (dem Minor) gleich ist. Mit als Major und als Minor gilt also: oder Das mittels Division dieser Größen als Zahl berechnete Teilungsverhältnis des Goldenen Schnittes ist eine irrationale Zahl, das heißt eine Zahl, die sich nicht als Bruch ganzer Zahlen darstellen lässt. Diese Zahl wird ebenfalls als Goldener Schnitt oder auch als Goldene Zahl bezeichnet. Als mathematisches Symbol für diese Zahl wird meist der griechische Buchstabe Phi (, oder ), seltener auch Tau (, ) oder verwendet: Die Kenntnis des Goldenen Schnittes ist in der mathematischen Literatur seit der Zeit der griechischen Antike (Euklid von Alexandria) nachgewiesen. Vereinzelt schon im Spätmittelalter (Campanus von Novara) und besonders dann in der Renaissance (Luca Pacioli, Johannes Kepler) wurde er auch in philosophische und theologische Zusammenhänge gestellt. Seit dem 19. Jahrhundert wurde er zunächst in der ästhetischen Theorie (Adolf Zeising) und dann auch in künstlerischer, architektonischer und kunsthandwerklicher Praxis als ein ideales Prinzip ästhetischer Proportionierung bewertet. Die Nachweisbarkeit einer derart besonderen ästhetischen Wirkung ist in der Forschung allerdings umstritten, desgleichen die historische Frage, ob der Goldene Schnitt auch schon bei der Proportionierung von Kunst- und Bauwerken älterer Epochen eine Rolle gespielt hat. Das Verhältnis des Goldenen Schnitts ist nicht nur in Mathematik, Kunst oder Architektur von Bedeutung, sondern findet sich auch in der Natur, beispielsweise bei der Anordnung von Blättern und in Blütenständen mancher Pflanzen wieder. (de)
  • Στα μαθηματικά και την τέχνη, δύο ποσότητες έχουν αναλογία χρυσής τομής αν ο λόγος του αθροίσματος τους προς τη μεγαλύτερη ποσότητα είναι ίσος με το λόγο της μεγαλύτερης ποσότητας προς τη μικρότερη. Η εικόνα στα δεξιά αναπαριστά τη γεωμετρική ερμηνεία των παραπάνω. Εκφρασμένο αλγεβρικά: όπου το γράμμα αντιπροσωπεύει την χρυσή τομή. Η τιμή του είναι: Η χρυσή τομή αναφέρεται επίσης και ως χρυσός λόγος ή χρυσός κανόνας. Άλλα ονόματα είναι χρυσή μετριότητα και Θεϊκή αναλογία ενώ στον Ευκλείδη ο όρος ήταν άκρος και μέσος λόγος. Πολλοί καλλιτέχνες και αρχιτέκτονες του 20ού αιώνα προσάρμοσαν τα έργα τους ώστε να προσεγγίζουν τη χρυσή αναλογία—ιδίως στη μορφή του χρυσού ορθογωνίου παραλληλογράμμου, στο οποίο ο λόγος της μεγαλύτερης πλευράς προς τη μικρότερη είναι η χρυσή τομή—πιστεύοντας ότι αυτή η αναλογία είναι αισθητικά ευχάριστη. Οι μαθηματικοί από την εποχή του Ευκλείδη μέχρι σήμερα έχουν μελετήσει τις ιδιότητες της χρυσής τομής, συμπεριλαμβανομένης της εμφάνισής της στις διαστάσεις ενός κανονικού πενταγώνου και ενός χρυσού ορθογωνίου παραλληλογράμμου, το οποίο (όπως φαίνεται και στη διπλανή εικόνα) μπορεί να χωριστεί σε ένα τετράγωνο και ένα παρόμοιο παραλληλόγραμμο με τον ίδιο λόγο πλευρών όπως το αρχικό. Η χρυσή τομή έχει χρησιμοποιηθεί επίσης για την ανάλυση των αναλογιών φυσικών αντικειμένων καθώς και τεχνητών συστημάτων όπως οι οικονομικές αγορές. (el)
  • In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or ) represents the golden ratio. It is an irrational number that is a solution to the quadratic equation , with a value of: The golden ratio is also called the golden mean or golden section (Latin: sectio aurea). Other names include extreme and mean ratio, medial section, divine proportion (Latin: proportio divina), divine section (Latin: sectio divina), golden proportion, golden cut, and golden number. Mathematicians since Euclid have studied the properties of the golden ratio, including its appearance in the dimensions of a regular pentagon and in a golden rectangle, which may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has also been used to analyze the proportions of natural objects as well as man-made systems such as financial markets, in some cases based on dubious fits to data. The golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other plant parts. Some twentieth-century artists and architects, including Le Corbusier and Salvador Dalí, have proportioned their works to approximate the golden ratio—especially in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio—believing this proportion to be aesthetically pleasing. (en)
  • La ora proporcio (latine sectio aurea) estas rilato inter du nombroj, plej ofte distancoj, rigardata en la arto kaj arkitekturo kiel centra nocio pri estetiko kaj perfekta harmonio. Plue la ora proporcio aperadas ankaŭ en la naturo kaj havas interesajn matematikajn ecojn. Ora sekco estas divido de difinita distanco je du partoj, per kiu la rilato de la malgranda parto al la granda estas la sama kiel la rilato de la granda al la tuto. Se la tuta longo estas a kaj la pli granda parto estas x, tiam la pli malgranda parto estas a – x. La proporcio estas do (a – x) : x = x : a. La bazo de la ora proporcio estas la nombro fi (Φ, φ) : * Ora proporcio sur linio * Aproksimo de per kvadratoj, oraj ortanguloj kaj cirkelo. Ora spiralo estas speciala tipo de . * Konstruado de ora ortangulo per liniilo kaj cirkelo. (eo)
  • El número áureo (también llamado número de oro, razón extrema y media,​ razón áurea, razón dorada, media áurea, proporción áurea y divina proporción​) es un número irracional,​ representado por la letra griega φ (phi) (en minúscula) o Φ (Phi) (en mayúscula) en honor al escultor griego Fidias. Su valor numérico, mediante radicales o decimales es: También se representa con la letra griega tau (Τ τ),​ por ser la primera letra de la raíz griega τομή, que significa acortar, aunque es más común encontrarlo representado con la letra fi (phi) (Φ,φ). También se representa con la letra griega alfa minúscula.​ Se trata de un número algebraico irracional (su representación decimal es infinita y no tiene periodo) que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como una expresión aritmética, sino como relación o proporción entre dos segmentos de una recta, es decir, una construcción geométrica. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza: en las nervaduras de las hojas de algunos árboles, en el grosor de las ramas, en el caparazón de un caracol, en los flósculos de los girasoles, etc. Una de sus propiedades aritméticas más curiosas es que su cuadrado (Φ2 = 2,61803398874988…) y su recíproco (1/Φ = 0,61803398874988…) tienen las mismas infinitas cifras decimales. Asimismo, se atribuye un carácter estético a los objetos cuyas medidas guardan la proporción áurea. Algunos incluso creen que posee una importancia mística. A lo largo de la historia, se ha atribuido su inclusión en el diseño de diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido cuestionados por los estudiosos de las matemáticas y el arte. (es)
  • Urrezko zenbakia matematikako zenbakirik ezagunenetariko bat da, ezagunena ez bada. Baditu beste hainbat izen ere: urrezko proportzioa, zerutiar zenbakia, jainkozko proportzioa eta abar. Zenbaki irrazionala da, eta hortaz ezinezkoa da zenbaki guztiak ezagutzea eta askotan lehenengoak jakitearekin nahikoa da bere propietateez baliatzeko. Hiru zenbaki irrazional famatuetatik (Pi, e eta Fi), azken hau da bakarra ekuazio batetik ateratzen dena: x2 = x + 1 ekuazioaren emaitza positibo bakarra da. Hau da balio zehatza: Aljebraikoki: Urrezko zenbakia φ (phi/fi) greziar letrarekin adierazi ohi da. Izen hori matematikari alemaniar matematikariak jarri zion, Fidias eskultorearen ohorez, Partenoia eraikitzeko erabili omen zuena. Esparru askotan ikusi genezake, esaterako eta batzuk aipatzearren, anatomia, arkitektura, landareen munduan... Pizkundetik gutxienez, artista eta arkitekto ugarik urrezko zenbakia erabili dute lanen proportzioak sortzerakoan, batez ere urrezko laukizuzenaren itxura hartuz. Laukizuzen honen bi aldeen arteko proportzioa da urrezkoa, estetikoki atsegina delakoan. (eu)
  • Sa mhatamaitic, an cóimheas a fhaightear má tá pointe P ag roinnt líne dírí AB ionas gur AP:PB = AB:AP = τ, ina gcomharthaítear é leis an siombail τ. Tugtar an meán órga air seo freisin. τ = (τ+1)/τ. Chuir Vitriúvias i bhfeidhm san ailtireacht é, agus bhí an-spéis ann san Athbheochan. Mar shampla, bunaithe ar an gcóimheas seo atá an pictiúr cáiliúil de chuid Pietro della Francesca, Batessimo di Cristo (Baisteadh Chríost, 1440-1460). (ga)
  • Dalam matematika, dua nilai dianggap berada dalam hubungan rasio emas () jika rasio antara jumlah kedua nilai itu terhadap nilai yang besar sama dengan rasio antara nilai besar terhadap nilai kecil. Nilai yang lebih besar dilambangkan dengan huruf a, sedangkan nilai yang lebih kecil dilambangkan dengan huruf b. Gambar di sebelah kanan menggambarkan hubungan geometrik yang jika dirumuskan secara aljabar adalah sebagai berikut: dimana huruf Yunani phi () mewakili rasio emas. Nilainya adalah: Setidaknya sejak Abad Renaisans, banyak seniman dan arsitek telah membuat proporsi karya sesuai dengan rasio emas—terutama dalam bentuk , yaitu perbandingan sisi panjang terhadap sisi pendek sesuai dengan nilai rasio emas—dipercaya proporsi ini secara estetika sangat ideal. Sebuah persegi panjang emas dapat dipotong menjadi persegi dan persegi panjang kecil dengan yang sama persis. Para ahli matematika sejak zaman Euclid telah mempelajari rasio emas karena sifatnya yang unik dan menarik. Rasio emas juga digunakan dalam analisis pasar keuangan, serta strategi seperti . Rasio emas sering kali disebut bagian emas (Latin: sectio aurea) atau rata-rata emas. Nama lainnya antara lain rasio ekstrem dan rata-rata, bagian tengah, proporsi ilahiah, bagian ilahiah (Latin: sectio divina), proporsi emas, potongan emas, angka emas, dan rata-rata Phidias. (in)
  • La sezione aurea o rapporto aureo o numero aureo o costante di Fidia o proporzione divina, nell'ambito delle arti figurative e della matematica, indica il numero irrazionale 1,6180339887... ottenuto effettuando il rapporto fra due lunghezze disuguali delle quali la maggiore è medio proporzionale tra la minore e la somma delle due : Valgono pertanto le seguenti relazioni: Considerando solo il primo e l'ultimo membro e tenendo conto della definizione di possiamo anche scrivere            (1) da cui discende l'equazione polinomiale a coefficienti interi          (2) La soluzione positiva di tale equazione (unica ammissibile essendo una quantità positiva per definizione) porta alla determinazione del valore della sezione aurea dato da: (3) La sezione aurea è quindi un numero irrazionale (ovvero non rappresentabile mediante rapporto di numeri interi data la presenza di nel numeratore della (3)) e algebrico (ovvero soluzione di un'equazione polinomiale a coefficienti interi come evidenziato dalla (2)). Può essere approssimata effettuando il rapporto fra termini consecutivi della successione di Fibonacci a cui è strettamente connessa. I due segmenti e possono essere ottenuti graficamente come illustrato nella figura a fianco. La base del rettangolo è pari a e la sua altezza è pari ad : il loro rapporto in base alla (3) dà proprio la sezione aurea. Se nella (1) si sostituisce iterativamente alla a denominatore tutto il secondo membro anch'esso pari a otteniamo la frazione continua: Un'altra rappresentazione di come frazione continua è costituita dai quadrati dei numeri di Fibonacci e delle aree del rettangolo aureo: Le sue proprietà geometriche e matematiche e la frequente riproposizione in svariati contesti naturali e culturali, apparentemente non collegati tra loro, hanno suscitato per secoli nella mente dell'uomo la conferma dell'esistenza di un rapporto tra macrocosmo e microcosmo, tra Dio e l'uomo, l'universo e la natura: un rapporto tra il tutto e la parte, tra la parte più grande e quella più piccola che si ripete all'infinito attraverso infinite suddivisioni. Diversi filosofi e artisti sono arrivati a cogliervi col tempo un ideale di bellezza e armonia spingendosi a ricercarlo e, in alcuni casi, a ricrearlo nell'ambiente antropico quale canone di bellezza; testimonianza ne è la storia del nome che in epoche più recenti ha assunto gli appellativi di aureo e divino. (it)
  • 黄金比(おうごんひ、英語: golden ratio)は、 の比である。近似値は1:1.618、約5:8もしくは8:13。 線分を a, b の長さで 2 つに分割するときに、a : b = b : (a + b) が成り立つように分割したときの比 a : b のことであり、最も美しい比とされる。貴金属比の1つ(第1貴金属比)。 黄金比において は、二次方程式 x2 − x − 1 = 0 の正の解であり、これを黄金数(おうごんすう、英語: golden number)という。しばしばギリシア文字の φ(ファイ)で表されるが、τ(タウ)を用いる場合もある。 黄金数には,次のような性質がある。 黄金比は中末比(ちゅうまつひ)や外中比(がいちゅうひ)とも呼ばれる。a : b = b : (a + b) が成り立つとき、a を末項(まっこう)、b を中項(ちゅうこう)という。 (ja)
  • 황금비(한국 한자: 黃金比, Golden ratio) 또는 황금분할(黃金分割)은 어떤 두 수의 비율이 그 합과 두 수중 큰 수의 비율과 같도록 하는 비율로, 근사값이 약 1.618인 무리수이다. 수학적으로 로 정의된다. 유클리드(원론 3, 141)가 그 특징을 연구한 이래로 많은 수학자들이 자연에서 찾을 수 있는 황금비율을 연구해 왔다. (ko)
  • De gulden snede, sectio aurea of sectio divina, ook wel de verdeling in uiterste en middelste reden genaamd, is de verdeling van een lijnstuk in twee delen in een speciale verhouding. Bij de gulden snede verhoudt het grootste van de twee delen zich tot het kleinste, zoals het gehele lijnstuk zich verhoudt tot het grootste. Geven we het grootste deel aan met a en het kleinste deel met b, dan is de verhouding van beide zo dat . De bedoelde verhouding a/b wordt het gulden getal genoemd en aangeduid met de Griekse letter (phi); zoals hieronder aangetoond wordt, geldt: Het getal is dus irrationaal, maar niet transcendent. Hoewel de wiskundige eigenschappen van de gulden snede al in de oudheid werden bestudeerd, dateert de term "gulden snede" pas uit de jaren 30 van de 19e eeuw. (nl)
  • Złoty podział (łac. sectio aurea), podział harmoniczny, złota proporcja, boska proporcja (łac. divina proportio) – podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej. Innymi słowy: długość dłuższej części ma być średnią geometryczną długości krótszej części i całego odcinka. Rysunek obok ilustruje ten związek geometrycznie. Wyrażony algebraicznie: Stosunek, o którym mowa w definicji, nazywa się złotą liczbą i oznacza grecką literą φ (czyt. „fi”). Jej wartość wynosi: Złoty podział wykorzystuje się często w estetycznych, proporcjonalnych kompozycjach architektonicznych, malarskich, fotograficznych itp. Znany był już w starożytności i przypisywano mu wyjątkowe walory estetyczne. Stosowano go np. w planach budowli na Akropolu.Co najmniej od XX wieku wielu artystów i architektów tworzyło swoje dzieła z zachowaniem złotego stosunku – szczególnie w formie złotego prostokąta, w którym stosunek dłuższego boku do krótszego jest równy złotej proporcji – zgodnie z poglądem, że takie proporcje wyglądają estetycznie (zobacz Zastosowania i obserwacje poniżej). Złoty prostokąt może być rozcięty na kwadrat i mniejszy prostokąt o tych samych proporcjach co rozcinany. Matematycy, począwszy od Euklidesa, badali złoty podział z powodu jego wyjątkowych i interesujących własności. Złoty podział jest także używany w analizie rynków finansowych, w strategiach takich jak (ang. Fibonacci retracement). Złoty podział (łac.: sectio aurea) jest często nazywany złotym stosunkiem lub złotym środkiem. Inne nazwy obejmują złoty sposób, średni podział, boską proporcję, boski podział (łac. sectio divina), złotą proporcję, złote cięcie, złotą liczbę i środek Fidiasza. (pl)
  • Proporção áurea, número de ouro, número áureo, secção áurea, proporção de ouro é uma constante real algébrica irracional denotada pela letra grega (PHI), em homenagem ao escultor Phideas (Fídias), que a teria utilizado para conceber o Parthenon, e com o valor arredondado a três casas decimais de 1,618. Também é chamada de se(c)ção áurea (do latim sectio aurea), razão áurea, razão de ouro, média e extrema razão (Euclides), divina proporção, divina seção (do latim sectio divina), proporção em extrema razão, divisão de extrema razão ou áurea excelência. O número de ouro é ainda frequentemente chamado razão de Phidias. Desde a Antiguidade, a proporção áurea é usada na arte. É frequente a sua utilização em pinturas renascentistas, como as do mestre Giotto. Este número está envolvido com a natureza do crescimento. Phi (não confundir com o número Pi ), como é chamado o número de ouro, pode ser encontrado de forma aproximada no homem (o tamanho das falanges, ossos dos dedos, por exemplo), nas colmeias, entre inúmeros outros exemplos que envolvem a ordem de crescimento na natureza. Justamente por ser encontrado em estudos de crescimento, o número de ouro ganhou um status de "ideal", sendo alvo de pesquisadores, artistas e escritores. O fato de ser apoiado pela matemática é que o torna fascinante. (pt)
  • Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же как сумма величин к бо́льшей, то есть: Исторически изначально в древнегреческой математике золотым сечением именовалось деление отрезка точкой на две части так, что бо́льшая часть относится к меньшей, как весь отрезок к большей: . Позже это понятие было распространено на произвольные величины. Число, равное отношению , обычно обозначается прописной греческой буквой , в честь древнегреческого скульптора и архитектора Фидия, реже — греческой буквой .Из исходного равенства (например, представляя a или даже a/b независимой переменной и решая выводимое из исходного равенства квадратное уравнение) нетрудно получить, что число Обратное число, обозначаемое строчной буквой , Отсюда следует, что . Число называется также золотым числом. Для практических целей ограничиваются приблизительным значением = 1,618 или = 1,62. В процентном округлённом значении золотое сечение — это деление какой-либо величины в отношении 62 % и 38 %. Золотое сечение имеет множество замечательных свойств, но, кроме того, ему приписывают и многие вымышленные свойства. (ru)
  • Gyllene snittet, på latin: sectio aurea, är det förhållande som erhålls när en sträcka delas i en längre del a och en kortare del b så att hela sträckan a + b förhåller sig till a som a förhåller sig till b: Gyllene snittet brukar betecknas med φ (den grekiska bokstaven fi). Det gyllene snittets värde är Ofta används också det omvända förhållandet 1/φ. Detta värde brukar betecknas med Φ (ett versalt fi): En rektangel vars sidor förhåller sig som det gyllene snittet kallas den gyllene rektangeln. Gyllene snittet var känt redan av Pythagoras och de gamla grekerna och genom tiderna, kanske framför allt under renässansen, har man i detta förhållande velat se en norm för den fullkomliga harmonin hos mått och proportioner inom måleriet, fotokonsten, arkitekturen och bildhuggarkonsten. Förespråkare har också velat se gyllene snittets proportioner i ett stort antal av naturens skapelser, något som dock har ifrågasatts. Matematikerna i det antika Grekland intresserade sig för det man nu kallar gyllene snittet eftersom värdet ständigt dök upp i olika geometriska figurer och kroppar som pentagrammet och ikosaedern. Upptäckten av förhållandet brukar tillskrivas Pythagoras och hans följeslagare. Dessa hade en regelbunden femhörning, med ett inskrivet regelbundet pentagram, som symbol. Den första exakta beskrivningen av gyllene snittet återfinns hos Euklides (cirka 300 f.Kr.). I sin Elementa betecknar han uppdelningen av en sträcka i gyllene snittets proportioner som "delning i extrem- och medelförhållande".Begreppet används i lösningen av flera av problemen i Elementa. Euklides beteckning var fram till mitten av 1800-talet den huvudsakligen använda. Den medeltida matematikern och franciskanermunken Luca Pacioli (1445–1517) betecknar i sitt verk De Divina Proportione, publicerad i Venedig år 1509, det gyllene snittet som "det gudomliga förhållandet". I den andra delen av detta verk avhandlas den romerske arkitekten Vitruvius idéer om den mänskliga kroppens proportioner som utgångspunkt för arkitektur. Skriften innehåller illustrationer av Leonardo da Vinci som undervisades i matematik av Pacioli. I en annan av da Vincis berömda teckningar, den Vitruvianske mannen från runt 1492, kan man hitta ett approximativt gyllene snitt i förhållandet mellan kvadratens sida och cirkelns radie. Namnet "det gyllene snittet" användes första gången 1835 av Martin Ohm, bror till Georg Ohm i en lärobok i matematik. (sv)
  • 黃金比例,又稱黄金分割,是一個數學常數,一般以希臘字母表示。可以透過以下代數式定義: 這也是黃金比例一名的由來。黄金比例的準確值為,所以是无理数,而大約值則為(小數點後20位, ): 应用时一般取1.618,就像圆周率在应用时取3.14159一样。 黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈現於不少動物和植物的外觀。現今很多工業產品、電子產品、建築物或藝術品均普遍應用黄金分割,展現其實用性與美觀性。 (zh)
  • У математиці та мистецтві дві величини утворюють золотий перетин, якщо співвідношення їх суми і більшої величини дорівнює співвідношенню більшої і меншої. Це відношення прийнято позначати грецькою буквою . Золотий перетин вважається співвідношенням найвідповіднішим естетичному сприйняттю зображення. Застосовується в мистецтві й архітектурі, найчастіше як золотий прямокутник. Золотий прямокутник утворюється при поділі відрізку АВ в такій точці О, що площа прямокутника, одною стороною якого є весь відрізок, а іншою — менший з відрізків, дорівнює площі квадрата з більшим відрізком як стороною (|АВ| * |OB| = |AO|2). Це рівняння має єдиний додатний розв'язок Відношення двох відрізків приблизно дорівнює 13:8. Число деколи називають золотим числом. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12386 (xsd:integer)
dbo:wikiPageLength
  • 86887 (xsd:integer)
dbo:wikiPageRevisionID
  • 984727856 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/g044570 (en)
dbp:title
  • Golden ratio (en)
  • Golden Ratio (en)
dbp:urlname
  • GoldenRatio (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Sa mhatamaitic, an cóimheas a fhaightear má tá pointe P ag roinnt líne dírí AB ionas gur AP:PB = AB:AP = τ, ina gcomharthaítear é leis an siombail τ. Tugtar an meán órga air seo freisin. τ = (τ+1)/τ. Chuir Vitriúvias i bhfeidhm san ailtireacht é, agus bhí an-spéis ann san Athbheochan. Mar shampla, bunaithe ar an gcóimheas seo atá an pictiúr cáiliúil de chuid Pietro della Francesca, Batessimo di Cristo (Baisteadh Chríost, 1440-1460). (ga)
  • 黄金比(おうごんひ、英語: golden ratio)は、 の比である。近似値は1:1.618、約5:8もしくは8:13。 線分を a, b の長さで 2 つに分割するときに、a : b = b : (a + b) が成り立つように分割したときの比 a : b のことであり、最も美しい比とされる。貴金属比の1つ(第1貴金属比)。 黄金比において は、二次方程式 x2 − x − 1 = 0 の正の解であり、これを黄金数(おうごんすう、英語: golden number)という。しばしばギリシア文字の φ(ファイ)で表されるが、τ(タウ)を用いる場合もある。 黄金数には,次のような性質がある。 黄金比は中末比(ちゅうまつひ)や外中比(がいちゅうひ)とも呼ばれる。a : b = b : (a + b) が成り立つとき、a を末項(まっこう)、b を中項(ちゅうこう)という。 (ja)
  • 황금비(한국 한자: 黃金比, Golden ratio) 또는 황금분할(黃金分割)은 어떤 두 수의 비율이 그 합과 두 수중 큰 수의 비율과 같도록 하는 비율로, 근사값이 약 1.618인 무리수이다. 수학적으로 로 정의된다. 유클리드(원론 3, 141)가 그 특징을 연구한 이래로 많은 수학자들이 자연에서 찾을 수 있는 황금비율을 연구해 왔다. (ko)
  • 黃金比例,又稱黄金分割,是一個數學常數,一般以希臘字母表示。可以透過以下代數式定義: 這也是黃金比例一名的由來。黄金比例的準確值為,所以是无理数,而大約值則為(小數點後20位, ): 应用时一般取1.618,就像圆周率在应用时取3.14159一样。 黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈現於不少動物和植物的外觀。現今很多工業產品、電子產品、建築物或藝術品均普遍應用黄金分割,展現其實用性與美觀性。 (zh)
  • النسبة الذهبية (بالإنجليزية: Golden Ratio) في الرياضيات تحقق عندما يكون مجموع عددين مقسوم على أكبرهما يساوي خارج قسمة أكبر العددين على أصغرهما. إذا كان a أكبر من b فإن النسبة الذهبية هي تحقق: وهو ثابت رياضي معرف تبلغ قيمته 1.6180339887 تقريبا. لو نُظر إلى مستطيلات مختلفة، لوُجد بعضها أجمل من الآخر. وفي معظم الأحيان تكون نسبة أبعاد هذه المستطيلات بعضها إلى بعض هي نفسها. وتسمى هذه المستطيلات "المستطيلات الذهبية" وخارج قسمة طولها على عرضها يسمى "الرقم الذهبي". فنجد أنه في المستطيل الذهبي نسبة الطول إلى العرض تساوي . (ar)
  • La raó àuria,nombre auri, secció àuria o divina proporció és la raó entre dos segments a i b (o per extensió, entre dues quantitats a i b) que compleixen la condició que la raó entre la suma d'aquests dos segments i el segment major és la mateixa raó que hi ha entre el segment major i el segment menor. Dit en altres paraules, la suma dels dos segments és al segment major com el segment major és al segment menor. Anomenant a el segment (o nombre) major i b el menor, la formulació matemàtica de la definició es pot escriure com: (ca)
  • Jako zlatý řez (latinsky sectio aurea) se označuje poměr o hodnotě přibližně 1,618. V umění a fotografii je pokládán za ideální proporci mezi různými délkami. Zlatý řez vznikne rozdělením úsečky na dvě části tak, že poměr větší části k menší je stejný jako poměr celé úsečky k větší části. Hodnota tohoto poměru je rovna iracionálnímu číslu Značení písmenem φ začal na počátku 20. století používat , přičemž je zvolil na počest řeckého sochaře Feidia (cca 490–430 př. n. l.), který podle historiků ve svých dílech zlatý řez hojně využíval. Občas se používá také označení z řeckého tome = řez. (cs)
  • Als Goldener Schnitt (lateinisch sectio aurea, proportio divina) wird das Teilungsverhältnis einer Strecke oder anderen Größe bezeichnet, bei dem das Verhältnis des Ganzen zu seinem größeren Teil (auch Major genannt) dem Verhältnis des größeren zum kleineren Teil (dem Minor) gleich ist. Mit als Major und als Minor gilt also: oder Das Verhältnis des Goldenen Schnitts ist nicht nur in Mathematik, Kunst oder Architektur von Bedeutung, sondern findet sich auch in der Natur, beispielsweise bei der Anordnung von Blättern und in Blütenständen mancher Pflanzen wieder. (de)
  • Στα μαθηματικά και την τέχνη, δύο ποσότητες έχουν αναλογία χρυσής τομής αν ο λόγος του αθροίσματος τους προς τη μεγαλύτερη ποσότητα είναι ίσος με το λόγο της μεγαλύτερης ποσότητας προς τη μικρότερη. Η εικόνα στα δεξιά αναπαριστά τη γεωμετρική ερμηνεία των παραπάνω. Εκφρασμένο αλγεβρικά: όπου το γράμμα αντιπροσωπεύει την χρυσή τομή. Η τιμή του είναι: Η χρυσή τομή αναφέρεται επίσης και ως χρυσός λόγος ή χρυσός κανόνας. Άλλα ονόματα είναι χρυσή μετριότητα και Θεϊκή αναλογία ενώ στον Ευκλείδη ο όρος ήταν άκρος και μέσος λόγος. (el)
  • In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or ) represents the golden ratio. It is an irrational number that is a solution to the quadratic equation , with a value of: (en)
  • La ora proporcio (latine sectio aurea) estas rilato inter du nombroj, plej ofte distancoj, rigardata en la arto kaj arkitekturo kiel centra nocio pri estetiko kaj perfekta harmonio. Plue la ora proporcio aperadas ankaŭ en la naturo kaj havas interesajn matematikajn ecojn. Ora sekco estas divido de difinita distanco je du partoj, per kiu la rilato de la malgranda parto al la granda estas la sama kiel la rilato de la granda al la tuto. Se la tuta longo estas a kaj la pli granda parto estas x, tiam la pli malgranda parto estas a – x. La proporcio estas do (a – x) : x = x : a. * * * (eo)
  • Urrezko zenbakia matematikako zenbakirik ezagunenetariko bat da, ezagunena ez bada. Baditu beste hainbat izen ere: urrezko proportzioa, zerutiar zenbakia, jainkozko proportzioa eta abar. Zenbaki irrazionala da, eta hortaz ezinezkoa da zenbaki guztiak ezagutzea eta askotan lehenengoak jakitearekin nahikoa da bere propietateez baliatzeko. Hiru zenbaki irrazional famatuetatik (Pi, e eta Fi), azken hau da bakarra ekuazio batetik ateratzen dena: x2 = x + 1 ekuazioaren emaitza positibo bakarra da. Hau da balio zehatza: Aljebraikoki: (eu)
  • El número áureo (también llamado número de oro, razón extrema y media,​ razón áurea, razón dorada, media áurea, proporción áurea y divina proporción​) es un número irracional,​ representado por la letra griega φ (phi) (en minúscula) o Φ (Phi) (en mayúscula) en honor al escultor griego Fidias. Su valor numérico, mediante radicales o decimales es: (es)
  • Dalam matematika, dua nilai dianggap berada dalam hubungan rasio emas () jika rasio antara jumlah kedua nilai itu terhadap nilai yang besar sama dengan rasio antara nilai besar terhadap nilai kecil. Nilai yang lebih besar dilambangkan dengan huruf a, sedangkan nilai yang lebih kecil dilambangkan dengan huruf b. Gambar di sebelah kanan menggambarkan hubungan geometrik yang jika dirumuskan secara aljabar adalah sebagai berikut: dimana huruf Yunani phi () mewakili rasio emas. Nilainya adalah: (in)
  • La sezione aurea o rapporto aureo o numero aureo o costante di Fidia o proporzione divina, nell'ambito delle arti figurative e della matematica, indica il numero irrazionale 1,6180339887... ottenuto effettuando il rapporto fra due lunghezze disuguali delle quali la maggiore è medio proporzionale tra la minore e la somma delle due : Valgono pertanto le seguenti relazioni: Considerando solo il primo e l'ultimo membro e tenendo conto della definizione di possiamo anche scrivere            (1) da cui discende l'equazione polinomiale a coefficienti interi          (2) (3) (it)
  • De gulden snede, sectio aurea of sectio divina, ook wel de verdeling in uiterste en middelste reden genaamd, is de verdeling van een lijnstuk in twee delen in een speciale verhouding. Bij de gulden snede verhoudt het grootste van de twee delen zich tot het kleinste, zoals het gehele lijnstuk zich verhoudt tot het grootste. Geven we het grootste deel aan met a en het kleinste deel met b, dan is de verhouding van beide zo dat . De bedoelde verhouding a/b wordt het gulden getal genoemd en aangeduid met de Griekse letter (phi); zoals hieronder aangetoond wordt, geldt: (nl)
  • Złoty podział (łac. sectio aurea), podział harmoniczny, złota proporcja, boska proporcja (łac. divina proportio) – podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej. Innymi słowy: długość dłuższej części ma być średnią geometryczną długości krótszej części i całego odcinka. Rysunek obok ilustruje ten związek geometrycznie. Wyrażony algebraicznie: Stosunek, o którym mowa w definicji, nazywa się złotą liczbą i oznacza grecką literą φ (czyt. „fi”). Jej wartość wynosi: (pl)
  • Proporção áurea, número de ouro, número áureo, secção áurea, proporção de ouro é uma constante real algébrica irracional denotada pela letra grega (PHI), em homenagem ao escultor Phideas (Fídias), que a teria utilizado para conceber o Parthenon, e com o valor arredondado a três casas decimais de 1,618. Também é chamada de se(c)ção áurea (do latim sectio aurea), razão áurea, razão de ouro, média e extrema razão (Euclides), divina proporção, divina seção (do latim sectio divina), proporção em extrema razão, divisão de extrema razão ou áurea excelência. O número de ouro é ainda frequentemente chamado razão de Phidias. (pt)
  • Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же как сумма величин к бо́льшей, то есть: Исторически изначально в древнегреческой математике золотым сечением именовалось деление отрезка точкой на две части так, что бо́льшая часть относится к меньшей, как весь отрезок к большей: . Позже это понятие было распространено на произвольные величины. Обратное число, обозначаемое строчной буквой , Отсюда следует, что . Число называется также золотым числом. (ru)
  • Gyllene snittet, på latin: sectio aurea, är det förhållande som erhålls när en sträcka delas i en längre del a och en kortare del b så att hela sträckan a + b förhåller sig till a som a förhåller sig till b: Gyllene snittet brukar betecknas med φ (den grekiska bokstaven fi). Det gyllene snittets värde är Ofta används också det omvända förhållandet 1/φ. Detta värde brukar betecknas med Φ (ett versalt fi): En rektangel vars sidor förhåller sig som det gyllene snittet kallas den gyllene rektangeln. (sv)
  • У математиці та мистецтві дві величини утворюють золотий перетин, якщо співвідношення їх суми і більшої величини дорівнює співвідношенню більшої і меншої. Це відношення прийнято позначати грецькою буквою . Це рівняння має єдиний додатний розв'язок Відношення двох відрізків приблизно дорівнює 13:8. Число деколи називають золотим числом. (uk)
rdfs:label
  • Golden ratio (en)
  • نسبة ذهبية (ar)
  • Secció àuria (ca)
  • Zlatý řez (cs)
  • Goldener Schnitt (de)
  • Χρυσή τομή (el)
  • Ora proporcio (eo)
  • Número áureo (es)
  • Urrezko zenbaki (eu)
  • Cóimheas órga (ga)
  • Rasio emas (in)
  • Sezione aurea (it)
  • 黄金比 (ja)
  • 황금비 (ko)
  • Gulden snede (nl)
  • Złoty podział (pl)
  • Proporção áurea (pt)
  • Золотое сечение (ru)
  • Gyllene snittet (sv)
  • Золотий перетин (uk)
  • 黄金分割率 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of