About: Golden ratio

An Entity of Type: Know-how105616786, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with where the Greek letter phi ( or ) represents the golden ratio. It is an irrational number that is a solution to the quadratic equation with a value of 1.618033988749....(OEIS: )

Property Value
dbo:abstract
  • النسبة الذهبية (بالإنجليزية: Golden Ratio)‏ في الرياضيات تحقق عندما يكون مجموع عددين مقسوم على أكبرهما يساوي خارج قسمة أكبر العددين على أصغرهما، أي أنه توجد كميتان في النسبة الذهبية إذا كانت نسبتهما هي نفس نسبة مجموعهما إلى أكبر الكميتين. يوضح الشكل الموجود على اليمين العلاقة الهندسية. فإذا كان a أكبر من b فإن النسبة الذهبية جبرياً هي تحقق: حيث الحرف اليوناني phi ( أو ) يمثل النسبة الذهبية. هو رقم غير نسبي يمثل حلًا للمعادلة التربيعية بقيمة: وهو ثابت رياضي معرف تبلغ قيمته 1.6180339887 تقريبا. لو نُظر إلى مستطيلات مختلفة، لوُجد بعضها أجمل من الآخر. وفي معظم الأحيان تكون نسبة أبعاد هذه المستطيلات بعضها إلى بعض هي نفسها. وتسمى هذه المستطيلات "المستطيلات الذهبية" وخارج قسمة طولها على عرضها يسمى "الرقم الذهبي". فنجد أنه في المستطيل الذهبي نسبة الطول إلى العرض تساوي . وجرت العادة أن يكتب الرقم الذهبي باعتماد الحرف الاغريقي Φ "يُنطق فاي أو في" أو رياضيا . وقد ظهرت هذه التسمية سنة 1914 وفاء لذكرى "فيدياس"، وهو نحّات قام بتزيين "البارثينون" في أثينا. ويظهر الرقم الذهبي أيضا في أشكال هندسية أخرى منها خماسي الأضلاع المنتظم، وهو شكل هندسي ذو خمس أضلاع محتوى في دائرة، و أضلاعه وزواياه كلها متقايسة. وفي هذا الشكل يمثل خارج قسمة القطر على أحد الأضلاع الرقم الذهبي وهو عرضة للتشكيك في كثير من الأحيان من حيث أن أرقام مشابهة تكون موجودة ويتم الترويج إلى أن الرقم موجود بذاته أو أن الرقم لا يكون موجوداً في حالات كثيرة ويُدعى أنه موجود. تسمى النسبة الذهبية أيضًا بالمتوسط الذهبي أو القسم الذهبي ( لاتيني : مقطع aurea ). وتشمل أسماء أخرى متطرفة ونسبة متوسط، قسم وسطي، نسبة الإلهية (اللاتينية: الإلهية proportio)، القسم الإلهي (اللاتينية: الإلهية التقطيعة)، نسبة الذهبية، وقطع ذهبية، ورقم ذهبي . درس علماء الرياضيات منذ إقليدس خصائص النسبة الذهبية، بما في ذلك مظهرها في أبعاد البنتاغون العادي وفي المستطيل الذهبي، والتي يمكن تقطيعها إلى مربع ومستطيل أصغر بنفس نسبة العرض إلى الارتفاع. تم استخدام النسبة الذهبية أيضًا لتحليل نسب الأشياء الطبيعية وكذلك الأنظمة التي من صنع الإنسان مثل الأسواق المالية، في بعض الحالات بناءً على نوبات مشكوك فيها للبيانات. تظهر النسبة الذهبية في بعض الأنماط في الطبيعة، بما في ذلك الترتيب الحلزوني للأوراق وأجزاء النبات الأخرى. قام بعض الفنانين والمهندسين المعماريين في القرن العشرين، بما في ذلك لو كوربوزييه وسلفادور دالي، بتناسب أعمالهم لتقريب النسبة الذهبية، معتقدين أن هذا ممتع من الناحية الجمالية . غالبًا ما تظهر هذه في شكل مستطيل ذهبي، حيث تكون نسبة الجانب الأطول إلى الأقصر هي النسبة الذهبية. (ar)
  • Jako zlatý řez (latinsky sectio aurea) se označuje poměr o hodnotě přibližně 1,618 : 1 (resp. 1 : 0,618). V umění a fotografii je pokládán za ideální proporci mezi různými délkami. Zlatý řez vznikne rozdělením úsečky na dvě části tak, že poměr větší části k menší je stejný jako poměr celé úsečky k větší části. Hodnota tohoto poměru je rovna iracionálnímu číslu Již nejméně od renesance využívají zlatý řez umělci ve svých dílech, zejména ve formě tzv. zlatého obdélníku, ve kterém se zlatý řez vyskytuje jako poměr stran. Zlatý řez prý totiž působí esteticky příznivým dojmem; poměr zlatého řezu lze také pozorovat v přírodě. Značení písmenem φ začal na počátku 20. století používat , přičemž je zvolil na počest řeckého sochaře Feidia (cca 490–430 př. n. l.), který podle historiků ve svých dílech zlatý řez hojně využíval. Občas se používá také označení τ z řeckého tome = řez. (cs)
  • Στα μαθηματικά και την τέχνη, δύο ποσότητες έχουν αναλογία χρυσής τομής αν ο λόγος του αθροίσματος τους προς τη μεγαλύτερη ποσότητα είναι ίσος με το λόγο της μεγαλύτερης ποσότητας προς τη μικρότερη. Η εικόνα στα δεξιά αναπαριστά τη γεωμετρική ερμηνεία των παραπάνω. Εκφρασμένο αλγεβρικά: όπου το γράμμα αντιπροσωπεύει την χρυσή τομή. Η τιμή του είναι: Η χρυσή τομή αναφέρεται επίσης και ως χρυσός λόγος ή χρυσός κανόνας. Άλλα ονόματα είναι χρυσή μετριότητα και Θεϊκή αναλογία ενώ στον Ευκλείδη ο όρος ήταν άκρος και μέσος λόγος. Πολλοί καλλιτέχνες και αρχιτέκτονες του 20ού αιώνα προσάρμοσαν τα έργα τους ώστε να προσεγγίζουν τη χρυσή αναλογία—ιδίως στη μορφή του χρυσού ορθογωνίου παραλληλογράμμου, στο οποίο ο λόγος της μεγαλύτερης πλευράς προς τη μικρότερη είναι η χρυσή τομή—πιστεύοντας ότι αυτή η αναλογία είναι αισθητικά ευχάριστη. Οι μαθηματικοί από την εποχή του Ευκλείδη μέχρι σήμερα έχουν μελετήσει τις ιδιότητες της χρυσής τομής, συμπεριλαμβανομένης της εμφάνισής της στις διαστάσεις ενός κανονικού πενταγώνου και ενός χρυσού ορθογωνίου παραλληλογράμμου, το οποίο (όπως φαίνεται και στη διπλανή εικόνα) μπορεί να χωριστεί σε ένα τετράγωνο και ένα παρόμοιο παραλληλόγραμμο με τον ίδιο λόγο πλευρών όπως το αρχικό. Η χρυσή τομή έχει χρησιμοποιηθεί επίσης για την ανάλυση των αναλογιών φυσικών αντικειμένων καθώς και τεχνητών συστημάτων όπως οι οικονομικές αγορές. (el)
  • La ora proporcio (latine sectio aurea) estas rilato inter du nombroj, plej ofte distancoj, rigardata en la arto kaj arkitekturo kiel centra nocio pri estetiko kaj perfekta harmonio. Plue la ora proporcio aperadas ankaŭ en la naturo kaj havas interesajn matematikajn ecojn. La oran nombron oni renkontas en la naturo, en arto ktp, sed unuavice en matematiko, kaj ĉefe ĝiajn matematikajn ecojn oni konsideras laŭ moderna vidpunkto, komencante per geometrio, kie ĝi rolas en pristudo de plurlateroj kaj pluredroj, sed ankaŭ en aritmetiko, kie, lige kun la vico de Fibonacci, ĝi havas unikajn ecojn. Fakuloj profunde traktas la diversajnmatematikajn ecojn kaj ligitajn demandojn, ekzemple kiuj regulaj plurlateroj krom la kvinlateroj estas desegneblaj per liniilo kaj cirkelo, kial por ĉiu reela nombro ekzistas frakcioj almenaŭ tiom proksimaj al la nombro kiel por la ora nombro (do ĝi estas la plej malbona rilate la eblon trovi proksimajn frakciojn). Ora sekco estas divido de difinita distanco je du partoj, per kiu la rilato de la malgranda parto al la granda estas la sama kiel la rilato de la granda al la tuto. Se la tuta longo estas a kaj la pli granda parto estas x, tiam la pli malgranda parto estas a – x. La proporcio estas do (a – x) : x = x : a. La bazo de la ora proporcio estas la nombro fi (Φ, φ) : * Ora proporcio sur linio * Aproksimo de per kvadratoj, oraj ortanguloj kaj cirkelo. Ora spiralo estas speciala tipo de . * Konstruado de ora ortangulo per liniilo kaj cirkelo. (eo)
  • Als Goldener Schnitt (lateinisch sectio aurea, proportio divina) wird das Teilungsverhältnis einer Strecke oder anderen Größe bezeichnet, bei dem das Verhältnis des Ganzen zu seinem größeren Teil (auch Major genannt) dem Verhältnis des größeren zum kleineren Teil (dem Minor) gleich ist. Mit als Major und als Minor gilt also: oder Das mittels Division dieser Größen als Zahl berechnete Teilungsverhältnis des Goldenen Schnittes ist eine irrationale Zahl, das heißt eine Zahl, die sich nicht als Bruch ganzer Zahlen darstellen lässt. Diese Zahl wird ebenfalls als Goldener Schnitt oder auch als Goldene Zahl bezeichnet. Als mathematisches Symbol für diese Zahl wird meist der griechische Buchstabe Phi , seltener auch Tau oder verwendet: Die Kenntnis des Goldenen Schnittes ist in der mathematischen Literatur seit der Zeit der griechischen Antike (Euklid von Alexandria) nachgewiesen. Vereinzelt schon im Spätmittelalter (Campanus von Novara) und besonders dann in der Renaissance (Luca Pacioli, Johannes Kepler) wurde er auch in philosophische und theologische Zusammenhänge gestellt. Seit dem 19. Jahrhundert wurde er zunächst in der ästhetischen Theorie (Adolf Zeising) und dann auch in künstlerischer, architektonischer und kunsthandwerklicher Praxis als ein ideales Prinzip ästhetischer Proportionierung bewertet. Es gibt allerdings keinen empirischen Beleg für eine besondere ästhetische Wirkung, die von Proportionen des Goldenen Schnittes ausgeht. Schon der Begründer der empirischen Ästhetik, Gustav Theodor Fechner stellte aufgrund eigener Experimente fest: „Hiernach kann ich nicht umhin, den ästhetischen Wert des goldenen Schnittes … überschätzt zu finden.“Auch die historische Frage, ob der Goldene Schnitt schon bei der Proportionierung von Kunst- und Bauwerken älterer Epochen eine Rolle gespielt hat, ist umstritten. Das Verhältnis des Goldenen Schnitts ist nicht nur in Mathematik, Kunst oder Architektur von Bedeutung, sondern findet sich auch in der Natur, beispielsweise bei der Anordnung von Blättern und in Blütenständen mancher Pflanzen wieder. (de)
  • Urrezko zenbakia matematikako zenbakirik ezagunenetariko bat da, ezagunena ez bada. Baditu beste hainbat izen ere: urrezko proportzioa, zerutiar zenbakia, jainkozko proportzioa eta abar. Zenbaki irrazionala da, eta hortaz ezinezkoa da hamartar guztiak ezagutzea eta askotan lehenengoak jakitearekin nahikoa da bere propietateez baliatzeko. Hiru zenbaki irrazional famatuetatik (Pi, e eta Fi), azken hau da bakarra ekuazio batetik ateratzen dena: x2 = x + 1 ekuazioaren emaitza positibo bakarra da. Hau da haren zenbakizko balioa, erradikalen edo hamartarren bidez: Aljebraikoki: Urrezko zenbakia φ (phi/fi) greziar letrarekin adierazi ohi da. Izen hori matematikari alemaniarrak jarri zion, Fidias eskultorearen ohorez, Partenoia eraikitzeko erabili omen zuena. Esparru askotan ikusi genezake, esaterako eta batzuk aipatzearren, anatomia, arkitektura, landareen munduan... Pizkundetik gutxienez, artista eta arkitekto ugarik urrezko zenbakia erabili dute lanen proportzioak sortzerakoan, batez ere urrezko laukizuzenaren itxura hartuz. Laukizuzen honen bi aldeen arteko proportzioa da urrezkoa, estetikoki atsegina delakoan. (eu)
  • In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with where the Greek letter phi ( or ) represents the golden ratio. It is an irrational number that is a solution to the quadratic equation with a value of 1.618033988749....(OEIS: ) The golden ratio is also called the golden mean or golden section (Latin: sectio aurea). Other names include extreme and mean ratio, medial section, divine proportion (Latin: proportio divina), divine section (Latin: sectio divina), golden proportion, golden cut, and golden number. Mathematicians since Euclid have studied the properties of the golden ratio, including its appearance in the dimensions of a regular pentagon and in a golden rectangle, which may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has also been used to analyze the proportions of natural objects as well as man-made systems such as financial markets, in some cases based on dubious fits to data. The golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other parts of vegetation. Some 20th-century artists and architects, including Le Corbusier and Salvador Dalí, have proportioned their works to approximate the golden ratio, believing this to be aesthetically pleasing. These often appear in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio. (en)
  • El número áureo (también llamado número de oro, número de Dios, razón extrema y media,​ razón áurea, razón dorada, media áurea, proporción áurea y divina proporción​) es un número irracional,​ representado por la letra griega φ (phi) (en minúscula) o Φ (Phi) (en mayúscula) en honor al escultor griego Fidias. Su valor numérico, mediante radicales o decimales es: También se representa con la letra griega tau (Τ τ),​ por ser la primera letra de la raíz griega τομή, que significa acortar, aunque es más común encontrarlo representado con la letra fi (phi) (Φ,φ). También se representa con la letra griega alfa minúscula.​ Se trata de un número algebraico irracional (su representación decimal es infinita y no tiene periodo) que posee muchas propiedades interesantes y que fue descubierto en la Antigüedad, no como una expresión aritmética, sino como relación o proporción entre dos segmentos de una recta, es decir, una construcción geométrica. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza: en las nervaduras de las hojas de algunos árboles, en el grosor de las ramas, en el caparazón de un caracol, en los flósculos de los girasoles, etc. Una de sus propiedades aritméticas más curiosas es que su cuadrado (Φ2 = 2,61803398874988…) y su recíproco (1/Φ = 0,61803398874988…) tienen las mismas infinitas cifras decimales. Asimismo, se atribuye un carácter estético a los objetos cuyas medidas guardan la proporción áurea. Algunos incluso creen que posee una importancia mística. A lo largo de la historia, se ha atribuido su inclusión en el diseño de diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido cuestionados por los estudiosos de las matemáticas y el arte. (es)
  • Sa mhatamaitic, an cóimheas a fhaightear má tá pointe P ag roinnt líne dírí AB ionas gur AP:PB = AB:AP = τ, ina gcomharthaítear é leis an siombail τ. Tugtar an meán órga air seo freisin. τ = (τ+1)/τ. Chuir Vitriúvias i bhfeidhm san ailtireacht é, agus bhí an-spéis ann san Athbheochan. Mar shampla, bunaithe ar an gcóimheas seo atá an pictiúr cáiliúil de chuid Pietro della Francesca, Batessimo di Cristo (Baisteadh Chríost, 1440-1460). (ga)
  • Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion, définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b), ce qui s'écrit : . Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ». Le nombre d'or est maintenant souvent désigné par la lettre φ ou (phi), et il est lié à l'angle d'or. Ce nombre irrationnel est l'unique solution positive de l'équation x2 = x + 1. Il vaut : . Il intervient dans la construction du pentagone régulier. Ses propriétés algébriques le lient à la suite de Fibonacci et au corps quadratique ℚ(√5). Le nombre d'or s'observe aussi dans la nature (quelques phyllotaxies, par exemple chez les capitules du tournesol, pavage de Penrose de quasi-cristaux) ou dans quelques œuvres et monuments (architecture de Le Corbusier, musique de Xenakis, peinture de Dalí). L'histoire de cette proportion commence à une qui n'est pas connue avec certitude ; la première mention connue de la division en extrême et moyenne raison apparaît dans les Éléments d'Euclide. À la Renaissance, Luca Pacioli, un moine franciscain italien, la met à l'honneur dans un manuel de mathématiques et la surnomme « divine proportion » en l'associant à un idéal envoyé du ciel. Cette vision se développe et s'enrichit d'une dimension esthétique, principalement au cours des XIXe et XXe siècles où naissent les termes de « section dorée » et de « nombre d'or ». Il est érigé en théorie esthétique et justifié par des arguments d'ordre mystique, comme une clé importante, voire explicative, dans la compréhension des structures du monde physique, particulièrement pour les critères de beauté et surtout d'harmonie ; sa présence est alors revendiquée dans les sciences de la nature et de la vie, proportions du corps humain ou dans les arts comme la peinture, l'architecture ou la musique. Certains artistes, tels le compositeur Xenakis ou le poète Paul Valéry ont adhéré à une partie de cette vision, soutenue par des livres populaires. À travers la médecine, l'archéologie ou les sciences de la nature et de la vie, la science infirme les théories de cette nature car elles sont fondées sur des généralisations abusives et des hypothèses inexactes. (fr)
  • 黄金比(おうごんひ、英語: golden ratio)とは、次の値で表される比のことである: 以下で述べるような数理的な性質は、にならないこの値のみが持つ性質であり、有理近似等には基本的には意味が無い。「デザインを美しくする」などといった巷間よく見られる説についてはの節を参照。小数に展開すると 1 : 1.6180339887... あるいは 0.6180339887... : 1 といった値となる。 この値は、次の二次方程式の解である: 黄金比は貴金属比の一つである(第1貴金属比)。 幾何的には、a : b が黄金比ならば、 a : b = b : (a + b) という等式が成り立つことから、縦横比が黄金比の矩形から最大正方形を切り落とした残りの矩形は、やはり黄金比の矩形となり、もとの矩形の相似になるという性質がある。 数列 a, b, a + b は、等比数列かつフィボナッチ数列をなす。そのため、(中項 b と末項 a + b の比という意味で)中末比(ちゅうまつひ)とも呼ばれる。 線分を2つに分け、短い部分と長い部分の長さの比が、長い部分と全体の長さの比に等しくなるようにしたときの比であるため、中外比(ちゅうがいひ)とも呼ばれる。黄金比で長さなどを分けることを黄金比分割または黄金分割という。 黄金比における を黄金数(おうごんすう、英語: golden number)という。しばしばギリシア文字の φ(ファイ)で表されるが、τ(タウ)を用いる場合もある。黄金数は、二次方程式 x2 − x − 1 = 0 の正の解である: (ja)
  • Proporção áurea, número de ouro, número áureo, secção áurea, proporção de ouro é uma constante real algébrica irracional denotada pela letra grega (PHI), em homenagem ao escultor Phideas (Fídias), que a teria utilizado para conceber o Parthenon, e com o valor arredondado a três casas decimais de 1,618. Também é chamada de se(c)ção áurea (do latim sectio aurea), razão áurea, razão de ouro, média e extrema razão (Euclides), divina proporção, divina seção (do latim sectio divina), proporção em extrema razão, divisão de extrema razão ou áurea excelência. O número de ouro é ainda frequentemente chamado razão de Phidias. Desde a Antiguidade, a proporção áurea é usada na arte. É frequente a sua utilização em pinturas renascentistas, como as do mestre Giotto. Este número está envolvido com a natureza do crescimento. Phi (não confundir com o número Pi ), como é chamado o número de ouro, pode ser encontrado de forma aproximada no homem (o tamanho das falanges, ossos dos dedos, por exemplo), nas colmeias, entre inúmeros outros exemplos que envolvem a ordem de crescimento na natureza. Justamente por ser encontrado em estudos de crescimento, o número de ouro ganhou um status de "ideal", sendo alvo de pesquisadores, artistas e escritores. O fato de ser apoiado pela matemática é que o torna fascinante. (pt)
  • De gulden snede, sectio aurea of sectio divina, ook wel de verdeling in uiterste en middelste reden genaamd, is de verdeling van een lijnstuk in twee delen met een speciale verhouding. Bij de gulden snede verhoudt het grootste van de twee delen zich tot het kleinste, zoals het gehele lijnstuk zich verhoudt tot het grootste. Geven we het grootste deel aan met en het kleinste deel met , dan is de verhouding van beide zo dat . De bedoelde verhouding wordt het gulden getal genoemd en aangeduid met de Griekse letter (phi); zoals hieronder aangetoond wordt, geldt: Het getal is dus irrationaal, maar niet transcendent. Er geldt ook: Hoewel de wiskundige eigenschappen van de gulden snede al in de oudheid werden bestudeerd, dateert de term "gulden snede" pas uit de jaren 30 van de 19e eeuw. (nl)
  • Złoty podział (łac. sectio aurea), podział harmoniczny, złota proporcja, boska proporcja (łac. divina proportio) – podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej. Innymi słowy: długość dłuższej części ma być średnią geometryczną długości krótszej części i całego odcinka. Rysunek obok ilustruje ten związek geometrycznie. Wyrażony algebraicznie: Stosunek, o którym mowa w definicji, nazywa się złotą liczbą i oznacza grecką literą φ (czyt. „fi”). Jej wartość wynosi: Złoty podział wykorzystuje się często w estetycznych, proporcjonalnych kompozycjach architektonicznych, malarskich, fotograficznych itp. Znany był już w starożytności i przypisywano mu wyjątkowe walory estetyczne. Stosowano go np. w planach budowli na Akropolu.Co najmniej od XX wieku wielu artystów i architektów tworzyło swoje dzieła z zachowaniem złotego stosunku – szczególnie w formie złotego prostokąta, w którym stosunek dłuższego boku do krótszego jest równy złotej proporcji – zgodnie z poglądem, że takie proporcje wyglądają estetycznie (zobacz Zastosowania i obserwacje poniżej). Złoty prostokąt może być rozcięty na kwadrat i mniejszy prostokąt o tych samych proporcjach co rozcinany. Matematycy, począwszy od Euklidesa, badali złoty podział z powodu jego wyjątkowych i interesujących własności. Złoty podział jest także używany w analizie rynków finansowych, w strategiach takich jak zniesienia Fibonacciego (ang. Fibonacci retracement). Złoty podział (łac. sectio aurea) jest często nazywany złotym stosunkiem lub złotym środkiem. Inne nazwy obejmują złoty sposób, średni podział, boską proporcję, boski podział (łac. sectio divina), złotą proporcję, złote cięcie, złotą liczbę i środek Fidiasza. (pl)
  • Gyllene snittet, på latin: sectio aurea, är det förhållande som erhålls när en sträcka delas i en längre del a och en kortare del b så att hela sträckan a + b förhåller sig till a som a förhåller sig till b: Gyllene snittet brukar betecknas med φ (den grekiska bokstaven fi). Det gyllene snittets värde är Ofta används också det omvända förhållandet 1/φ. Detta värde brukar betecknas med Φ (ett versalt fi): En rektangel vars sidor förhåller sig som det gyllene snittet kallas den gyllene rektangeln. Gyllene snittet var känt redan av Pythagoras och de gamla grekerna och genom tiderna, kanske framför allt under renässansen, har man i detta förhållande velat se en norm för den fullkomliga harmonin hos mått och proportioner inom måleriet, fotokonsten, arkitekturen och bildhuggarkonsten. Förespråkare har också velat se gyllene snittets proportioner i ett stort antal av naturens skapelser, något som dock har ifrågasatts. Matematikerna i det antika Grekland intresserade sig för det man nu kallar gyllene snittet eftersom värdet ständigt dök upp i olika geometriska figurer och kroppar som pentagrammet och ikosaedern. Upptäckten av förhållandet brukar tillskrivas Pythagoras och hans följeslagare. Dessa hade en regelbunden femhörning, med ett inskrivet regelbundet pentagram, som symbol. Den första exakta beskrivningen av gyllene snittet återfinns hos Euklides (cirka 300 f.Kr.). I sin Elementa betecknar han uppdelningen av en sträcka i gyllene snittets proportioner som "delning i extrem- och medelförhållande".Begreppet används i lösningen av flera av problemen i Elementa. Euklides beteckning var fram till mitten av 1800-talet den huvudsakligen använda. Den medeltida matematikern och franciskanermunken Luca Pacioli (1445–1517) betecknar i sitt verk De Divina Proportione, publicerad i Venedig år 1509, det gyllene snittet som "det gudomliga förhållandet". I den andra delen av detta verk avhandlas den romerske arkitekten Vitruvius idéer om den mänskliga kroppens proportioner som utgångspunkt för arkitektur. Skriften innehåller illustrationer av Leonardo da Vinci som undervisades i matematik av Pacioli. I en annan av da Vincis berömda teckningar, den Vitruvianske mannen från runt 1492, kan man hitta ett approximativt gyllene snitt i förhållandet mellan kvadratens sida och cirkelns radie. Namnet "det gyllene snittet" användes första gången 1835 av Martin Ohm, bror till Georg Ohm i en lärobok i matematik. (sv)
  • У математиці та мистецтві дві величини утворюють золотий пере́тин, якщо відношення їхньої суми до більшої величини дорівнює відношенню більшої до меншої. Це відношення заведено позначати грецькою буквою (фі). Золотий перетин вважається співвідношенням найвідповіднішим естетичному сприйняттю зображення. Застосовується в мистецтві й архітектурі, найчастіше як золотий прямокутник. Золотий прямокутник утворюється при поділі відрізку в такій точці , що площа прямокутника, одною стороною якого є весь відрізок, а іншою — менший з відрізків, дорівнює площі квадрата з більшим відрізком як стороною. . Це рівняння має єдиний додатний розв’язок Відношення двох відрізків приблизно дорівнює 13:8. Число деколи називають золотим числом. (uk)
  • Золотое сечение (золотая пропорция, иначе: деление в крайнем и среднем отношении, гармоническое деление) — наилучшее, единственное в своём роде отношение частей и целого, при котором отношения частей между собой и каждой части к целому равны. Такие отношения наблюдаются в природе, открыты в науке и соблюдаются в искусстве. На «золотых отрезках» основываются различные системы и способы пропорционирования в архитектуре. Соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же, как сумма этих величин к бо́льшей, то есть: является универсальным. Отсюда название, которое впервые появилось в эпоху Возрождения, в частности в трактате францисканского монаха, математика Луки Пачоли Божественная пропорция (лат. De Divina Proportione (1509), но закономерность подобных отношений была известна гораздо раньше: в Древней Месопотамии, Египте и античной Греции. Исторически в древнегреческой математике золотым сечением именовалось деление отрезка точкой на две части так, что бо́льшая часть относится к меньшей, как весь отрезок к большей: . Это понятие было распространено на произвольные величины. Число, равное отношению , обычно обозначается прописной греческой буквой (фи), в честь древнегреческого скульптора и архитектора Фидия, реже — греческой буквой (тау). Из исходного равенства (например, принимая a/b за неизвестную переменную x и решая получившееся уравнение ) нетрудно получить, что число Обратное число, обозначаемое строчной буквой , Отсюда следует, что . Число называется также золотым числом. Для практических целей ограничиваются приблизительным значением = 1,618 или = 1,62. В процентном округлённом значении золотое сечение — это деление величины в отношении 62 % и 38 %. Золотое сечение имеет множество замечательных свойств (например, 2 = + 1), но, кроме того, ему приписывают и многие вымышленные свойства. (ru)
  • 黃金比例,又稱黄金分割比、黄金分割率,是一個數學常數,一般以希臘字母表示。可以透過以下代數式定義: 這也是黃金比例一名的由來。黄金比例的準確值為,所以是无理数,而大約值則為(小數點後20位, ): 应用时一般取1.618,就像圆周率在应用时取3.1416一样。 黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈現於不少動物和植物的外觀。現今普遍很多工業產品、電子產品、建築物或藝術品均應用了黄金分割,提高其美觀性。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12386 (xsd:integer)
dbo:wikiPageLength
  • 90622 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1074010761 (xsd:integer)
dbo:wikiPageWikiLink
dbp:binary
  • ... (en)
dbp:decimal
  • ... (en)
dbp:hexadecimal
  • ... (en)
dbp:id
  • p/g044570 (en)
dbp:imageCaption
  • Line segments in the golden ratio (en)
dbp:title
  • Golden ratio (en)
  • Golden Ratio (en)
dbp:urlname
  • GoldenRatio (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Sa mhatamaitic, an cóimheas a fhaightear má tá pointe P ag roinnt líne dírí AB ionas gur AP:PB = AB:AP = τ, ina gcomharthaítear é leis an siombail τ. Tugtar an meán órga air seo freisin. τ = (τ+1)/τ. Chuir Vitriúvias i bhfeidhm san ailtireacht é, agus bhí an-spéis ann san Athbheochan. Mar shampla, bunaithe ar an gcóimheas seo atá an pictiúr cáiliúil de chuid Pietro della Francesca, Batessimo di Cristo (Baisteadh Chríost, 1440-1460). (ga)
  • 黃金比例,又稱黄金分割比、黄金分割率,是一個數學常數,一般以希臘字母表示。可以透過以下代數式定義: 這也是黃金比例一名的由來。黄金比例的準確值為,所以是无理数,而大約值則為(小數點後20位, ): 应用时一般取1.618,就像圆周率在应用时取3.1416一样。 黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈現於不少動物和植物的外觀。現今普遍很多工業產品、電子產品、建築物或藝術品均應用了黄金分割,提高其美觀性。 (zh)
  • النسبة الذهبية (بالإنجليزية: Golden Ratio)‏ في الرياضيات تحقق عندما يكون مجموع عددين مقسوم على أكبرهما يساوي خارج قسمة أكبر العددين على أصغرهما، أي أنه توجد كميتان في النسبة الذهبية إذا كانت نسبتهما هي نفس نسبة مجموعهما إلى أكبر الكميتين. يوضح الشكل الموجود على اليمين العلاقة الهندسية. فإذا كان a أكبر من b فإن النسبة الذهبية جبرياً هي تحقق: حيث الحرف اليوناني phi ( أو ) يمثل النسبة الذهبية. هو رقم غير نسبي يمثل حلًا للمعادلة التربيعية بقيمة: وهو ثابت رياضي معرف تبلغ قيمته 1.6180339887 تقريبا. فنجد أنه في المستطيل الذهبي نسبة الطول إلى العرض تساوي . (ar)
  • Jako zlatý řez (latinsky sectio aurea) se označuje poměr o hodnotě přibližně 1,618 : 1 (resp. 1 : 0,618). V umění a fotografii je pokládán za ideální proporci mezi různými délkami. Zlatý řez vznikne rozdělením úsečky na dvě části tak, že poměr větší části k menší je stejný jako poměr celé úsečky k větší části. Hodnota tohoto poměru je rovna iracionálnímu číslu (cs)
  • Als Goldener Schnitt (lateinisch sectio aurea, proportio divina) wird das Teilungsverhältnis einer Strecke oder anderen Größe bezeichnet, bei dem das Verhältnis des Ganzen zu seinem größeren Teil (auch Major genannt) dem Verhältnis des größeren zum kleineren Teil (dem Minor) gleich ist. Mit als Major und als Minor gilt also: oder Das Verhältnis des Goldenen Schnitts ist nicht nur in Mathematik, Kunst oder Architektur von Bedeutung, sondern findet sich auch in der Natur, beispielsweise bei der Anordnung von Blättern und in Blütenständen mancher Pflanzen wieder. (de)
  • Στα μαθηματικά και την τέχνη, δύο ποσότητες έχουν αναλογία χρυσής τομής αν ο λόγος του αθροίσματος τους προς τη μεγαλύτερη ποσότητα είναι ίσος με το λόγο της μεγαλύτερης ποσότητας προς τη μικρότερη. Η εικόνα στα δεξιά αναπαριστά τη γεωμετρική ερμηνεία των παραπάνω. Εκφρασμένο αλγεβρικά: όπου το γράμμα αντιπροσωπεύει την χρυσή τομή. Η τιμή του είναι: Η χρυσή τομή αναφέρεται επίσης και ως χρυσός λόγος ή χρυσός κανόνας. Άλλα ονόματα είναι χρυσή μετριότητα και Θεϊκή αναλογία ενώ στον Ευκλείδη ο όρος ήταν άκρος και μέσος λόγος. (el)
  • La ora proporcio (latine sectio aurea) estas rilato inter du nombroj, plej ofte distancoj, rigardata en la arto kaj arkitekturo kiel centra nocio pri estetiko kaj perfekta harmonio. Plue la ora proporcio aperadas ankaŭ en la naturo kaj havas interesajn matematikajn ecojn. Ora sekco estas divido de difinita distanco je du partoj, per kiu la rilato de la malgranda parto al la granda estas la sama kiel la rilato de la granda al la tuto. Se la tuta longo estas a kaj la pli granda parto estas x, tiam la pli malgranda parto estas a – x. La proporcio estas do (a – x) : x = x : a. * * * (eo)
  • Urrezko zenbakia matematikako zenbakirik ezagunenetariko bat da, ezagunena ez bada. Baditu beste hainbat izen ere: urrezko proportzioa, zerutiar zenbakia, jainkozko proportzioa eta abar. Zenbaki irrazionala da, eta hortaz ezinezkoa da hamartar guztiak ezagutzea eta askotan lehenengoak jakitearekin nahikoa da bere propietateez baliatzeko. Hiru zenbaki irrazional famatuetatik (Pi, e eta Fi), azken hau da bakarra ekuazio batetik ateratzen dena: x2 = x + 1 ekuazioaren emaitza positibo bakarra da. Hau da haren zenbakizko balioa, erradikalen edo hamartarren bidez: Aljebraikoki: (eu)
  • In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with where the Greek letter phi ( or ) represents the golden ratio. It is an irrational number that is a solution to the quadratic equation with a value of 1.618033988749....(OEIS: ) (en)
  • Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion, définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b), ce qui s'écrit : . Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ». Le nombre d'or est maintenant souvent désigné par la lettre φ ou (phi), et il est lié à l'angle d'or. . (fr)
  • El número áureo (también llamado número de oro, número de Dios, razón extrema y media,​ razón áurea, razón dorada, media áurea, proporción áurea y divina proporción​) es un número irracional,​ representado por la letra griega φ (phi) (en minúscula) o Φ (Phi) (en mayúscula) en honor al escultor griego Fidias. Su valor numérico, mediante radicales o decimales es: (es)
  • 黄金比(おうごんひ、英語: golden ratio)とは、次の値で表される比のことである: 以下で述べるような数理的な性質は、にならないこの値のみが持つ性質であり、有理近似等には基本的には意味が無い。「デザインを美しくする」などといった巷間よく見られる説についてはの節を参照。小数に展開すると 1 : 1.6180339887... あるいは 0.6180339887... : 1 といった値となる。 この値は、次の二次方程式の解である: 黄金比は貴金属比の一つである(第1貴金属比)。 幾何的には、a : b が黄金比ならば、 a : b = b : (a + b) という等式が成り立つことから、縦横比が黄金比の矩形から最大正方形を切り落とした残りの矩形は、やはり黄金比の矩形となり、もとの矩形の相似になるという性質がある。 数列 a, b, a + b は、等比数列かつフィボナッチ数列をなす。そのため、(中項 b と末項 a + b の比という意味で)中末比(ちゅうまつひ)とも呼ばれる。 線分を2つに分け、短い部分と長い部分の長さの比が、長い部分と全体の長さの比に等しくなるようにしたときの比であるため、中外比(ちゅうがいひ)とも呼ばれる。黄金比で長さなどを分けることを黄金比分割または黄金分割という。 黄金比における (ja)
  • De gulden snede, sectio aurea of sectio divina, ook wel de verdeling in uiterste en middelste reden genaamd, is de verdeling van een lijnstuk in twee delen met een speciale verhouding. Bij de gulden snede verhoudt het grootste van de twee delen zich tot het kleinste, zoals het gehele lijnstuk zich verhoudt tot het grootste. Geven we het grootste deel aan met en het kleinste deel met , dan is de verhouding van beide zo dat . De bedoelde verhouding wordt het gulden getal genoemd en aangeduid met de Griekse letter (phi); zoals hieronder aangetoond wordt, geldt: (nl)
  • Złoty podział (łac. sectio aurea), podział harmoniczny, złota proporcja, boska proporcja (łac. divina proportio) – podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej. Innymi słowy: długość dłuższej części ma być średnią geometryczną długości krótszej części i całego odcinka. Rysunek obok ilustruje ten związek geometrycznie. Wyrażony algebraicznie: Stosunek, o którym mowa w definicji, nazywa się złotą liczbą i oznacza grecką literą φ (czyt. „fi”). Jej wartość wynosi: (pl)
  • Proporção áurea, número de ouro, número áureo, secção áurea, proporção de ouro é uma constante real algébrica irracional denotada pela letra grega (PHI), em homenagem ao escultor Phideas (Fídias), que a teria utilizado para conceber o Parthenon, e com o valor arredondado a três casas decimais de 1,618. Também é chamada de se(c)ção áurea (do latim sectio aurea), razão áurea, razão de ouro, média e extrema razão (Euclides), divina proporção, divina seção (do latim sectio divina), proporção em extrema razão, divisão de extrema razão ou áurea excelência. O número de ouro é ainda frequentemente chamado razão de Phidias. (pt)
  • Gyllene snittet, på latin: sectio aurea, är det förhållande som erhålls när en sträcka delas i en längre del a och en kortare del b så att hela sträckan a + b förhåller sig till a som a förhåller sig till b: Gyllene snittet brukar betecknas med φ (den grekiska bokstaven fi). Det gyllene snittets värde är Ofta används också det omvända förhållandet 1/φ. Detta värde brukar betecknas med Φ (ett versalt fi): En rektangel vars sidor förhåller sig som det gyllene snittet kallas den gyllene rektangeln. (sv)
  • Золотое сечение (золотая пропорция, иначе: деление в крайнем и среднем отношении, гармоническое деление) — наилучшее, единственное в своём роде отношение частей и целого, при котором отношения частей между собой и каждой части к целому равны. Такие отношения наблюдаются в природе, открыты в науке и соблюдаются в искусстве. На «золотых отрезках» основываются различные системы и способы пропорционирования в архитектуре. Соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же, как сумма этих величин к бо́льшей, то есть: является универсальным. Отсюда название, которое впервые появилось в эпоху Возрождения, в частности в трактате францисканского монаха, математика Луки Пачоли Божественная пропорция (лат. De Divina Proportione (1509), но закономерность подобных от (ru)
  • У математиці та мистецтві дві величини утворюють золотий пере́тин, якщо відношення їхньої суми до більшої величини дорівнює відношенню більшої до меншої. Це відношення заведено позначати грецькою буквою (фі). . Це рівняння має єдиний додатний розв’язок Відношення двох відрізків приблизно дорівнює 13:8. Число деколи називають золотим числом. (uk)
rdfs:label
  • Golden ratio (en)
  • نسبة ذهبية (ar)
  • Zlatý řez (cs)
  • Secció àuria (ca)
  • Χρυσή τομή (el)
  • Goldener Schnitt (de)
  • Ora proporcio (eo)
  • Número áureo (es)
  • Urrezko zenbaki (eu)
  • Nombre d'or (fr)
  • Cóimheas órga (ga)
  • Rasio emas (in)
  • Sezione aurea (it)
  • 黄金比 (ja)
  • 황금비 (ko)
  • Proporção áurea (pt)
  • Gulden snede (nl)
  • Złoty podział (pl)
  • Золотое сечение (ru)
  • Золотий перетин (uk)
  • Gyllene snittet (sv)
  • 黄金分割率 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License