About: Axiom

An Entity of Type: Band, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. Any axiom is a statement that serves as a starting point from which other statements are logically derived. Whether it is meaningful (and, if so, what it means) for an axiom to be "true" is a subject of debate in the philosophy of mathematics.

Property Value
dbo:abstract
  • Axiom (z řec. axióma, to co se uznává) je tvrzení, které se předem pokládá za platné, a tudíž se nedokazuje. Podobný význam má slovo postulát. (cs)
  • المُسلَّمة أو الموضوعة أو البديهِيَّة (باليونانية: أكسيوما αξιωμα)‏ هي منطقٌ أو قضيَّةٌ أو مبدأٌ يُسلَّم به دون برهان أو دلائل تسنده؛ لأنّه واضح كالمبادئ العقلية والأوليَّات والضروريَّات. يمكن أن تكون المسلمة هي العبارة، الافتراض، المقولة أو القاعدة التي تشكل أساسًا للنظام الشكلي. بخلاف المبرهنات، المسلمات لا يمكن أن تشتق بمبادئ الاستنتاج، كما لا يمكن اثباتها عن طريق برهان شكلي - ببساطة لأنها مقدمات مفترضة - ليس هناك شيء آخر تستنتج منه منطقيًا (والا سيفترض تسميتها نظريات). كما يتضح من التعريف، المسلمة ليست بالضرورة حقيقة بينة بذاتها، ولكن بالأحرى تعبير شكلي منطقي يستعمل في الاستدلال للحصول على أكبر عدد ممكن من النتائج. تعتبر حقائق نظام معرفي مبسطة عندما يتم إثبات أن مجموعة ما من تصريحاته يمكن استخلاصها من جمل قليلة متعارف عليها وواضحة جيدا. وهذا لا يعني أنها يمكن أن تكون معروفة بشكل مستقل؛ وهناك عادة عدة طرق لتبسيط حقائق نظام معين من المعرفة (مثل الحساب). الرياضيات تميز نوعين من المسلمات : المسلمات المنطقية والمسلمات غير المنطقية. المسلمات تأخذ بشكل أساسي على أنها صحيحة ولا تحتاج لإثبات ومن هنا جاء اسمها (مسلمة) فهي تعتبر مسلمة الصحة ضمن هذا النظام الشكلي الذي يتشكل بناء عليها. بطبيعة الحال هذا لا يمنع التساؤل عن مدى صواب هذه المسلمات خارج النظام الشكلي، مما يدفع آخرون لتبني نظام جديد من المسلمات ينتج عنه نظام شكلي جديد وقواعد رياضية جديدة. أحد أشهر الأمثلة التي تتشكل بناء عليها الهندسة الإقليدية المستوية، وهي تختلف بشكل جذري عن أو هندسة ريمان التي تتبنى مسلمات أخرى. في بعض نظريات المعرفة (الابستمولوجيات): تعتبر المسلمات حقائق تستند إليها بقية المعارف. لكن لا تعترف باقي نظريات فلسفة المعرفة بمسلمة ما يدعى بالمسلمات. في المنطق ونظرية الألعاب والرياضيات : ليس من الضروري أن تكون المسلمة ذاتية الإثبات بل يكفي أنها تعبير منطقي شكلي يستخدم في استنتاج ليعطي نتائج. يعتبر نظام معرفي مسلمًا عندما يثبت أن كامل ادعاءاته، قضاياه، وحقائقه تستند إلى مجموعة صغيرة من المسلمات المستقلة عن بعضها البعض. (ar)
  • To αξίωμα ή αρχή στη λογική, είναι μια πρόταση η οποία δεν αποδεικνύεται, αλλά θεωρείται είτε προφανής, ή αποτέλεσμα κάποιας απόφασης. Έτσι, αξίωμα είναι μια λογική πρόταση, της οποίας η αλήθεια θεωρείται δεδομένη και χρησιμεύει ως αρχικό σημείο για την αναγωγή και το συμπέρασμα άλλων αληθών προτάσεων, ανάλογα με τη θεωρία που εφαρμόζεται. Στα μαθηματικά, ο όρος αξίωμα χρησιμοποιείται με δυο σχετικές αλλά διαφορετικές έννοιες: τα «λογικά» και «μη λογικά» αξιώματα. Και στις δύο περιπτώσεις, αξίωμα είναι μια μαθηματική πρόταση που χρησιμεύει ως αρχή για το συμπέρασμα άλλων προτάσεων με λογικό τρόπο. Αντίθετα με τα θεωρήματα, τα αξιώματα δεν μπορούν γενικά να παραχθούν με αρχές επαγωγής (εκτός αν πλεονάζουν), ούτε γίνεται να αποδειχθούν, αφού αποτελούν αρχικά σημεία: δεν υπάρχει κάτι από το οποίο να απορρέουν (τότε θα ήταν θεωρήματα). Τα λογικά αξιώματα είναι συνήθως προτάσεις που γίνονται αποδεκτές ως καθολικά αληθείς (π.χ. το Α και Β συνεπάγεται το Α). Τα μη-λογικά αξιώματα (π.χ. a + b = b + a) ορίζουν ιδιότητες για την περιοχή κάποιας συγκεκριμένης μαθηματικής θεωρίας (όπως η Αριθμητική). Όταν χρησιμοποιείται με αυτή την έννοια, η λέξεις «αξίωμα», «αρχή» και «υπόθεση» σημαίνουν το ίδιο. Γενικά, ένα μη-λογικό αξίωμα δεν είναι μια προφανής αλήθεια, αλλά μάλλον μια τυπική λογική έκφραση που χρησιμοποιείται σε επαγωγικούς συλλογισμούς για την ανάπτυξη μιας μαθηματικής θεωρίας. Η διαδικασία του να δειχθεί ότι όλες οι προτάσεις μιας θεωρίας ή ενός συστήματος μπορούν να παραχθούν από ένα μικρό αριθμό από προτάσεις (τα αξιώματα) λέγεται αξιωματικοποίηση της θεωρίας. Συνήθως υπάρχουν πολλοί τρόποι να αξιωματικοποιηθεί μια μαθηματική περιοχή. Το σύνολο αυτό υπόκειται σε δύο περιορισμούς: α) τα αξιώματα να είναι συμβιβαστά, και β) ανεξάρτητα το ένα από το άλλο. Ακόμη θα πρέπει το πλήθος των αξιωμάτων να είναι όσο το δυνατό λιγότερο. Εκτός της λογικής και των μαθηματικών, ο όρος «αξίωμα» μπορεί να αναφέρεται αόριστα σε οποιαδήποτε τεκμηριωμένη αρχή. (el)
  • Ein Axiom (von griechisch ἀξίωμα axíoma, „Forderung; Wille; Beschluss; Grundsatz; philos. (...) Satz, der keines Beweises bedarf“, „Wertschätzung, Urteil, als wahr angenommener Grundsatz“) ist ein Grundsatz einer Theorie, einer Wissenschaft oder eines axiomatischen Systems, der innerhalb dieses Systems weder begründet noch deduktiv abgeleitet, sondern als Grundlage willentlich akzeptiert oder gesetzt wird. (de)
  • An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The term has subtle differences in definition when used in the context of different fields of study. As defined in classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. As used in modern logic, an axiom is a premise or starting point for reasoning. As used in mathematics, the term axiom is used in two related but distinguishable senses: and . Logical axioms are usually statements that are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (A and B) implies A), while non-logical axioms (e.g., a + b = b + a) are actually substantive assertions about the elements of the domain of a specific mathematical theory (such as arithmetic). When used in the latter sense, "axiom", "postulate", and "assumption" may be used interchangeably. In most cases, a non-logical axiom is simply a formal logical expression used in deduction to build a mathematical theory, and might or might not be self-evident in nature (e.g., parallel postulate in Euclidean geometry). To axiomatize a system of knowledge is to show that its claims can be derived from a small, well-understood set of sentences (the axioms), and there may be multiple ways to axiomatize a given mathematical domain. Any axiom is a statement that serves as a starting point from which other statements are logically derived. Whether it is meaningful (and, if so, what it means) for an axiom to be "true" is a subject of debate in the philosophy of mathematics. (en)
  • Aksiomo estas principo (baza aserto), kiu estas akceptata sen pruvo en scienca teorio aŭ deduktiva sistemo. La vorto aksiomo devenas de greka αξιωμα [aksioma] - kiu signifas "io inda aŭ memevidenta". Aksiomoj kies valideco ne estas tiel evidenta ankaŭ estas nomataj ”postulatoj”. Parenca nocio estas ”dogmo”. Subfako de filozofio, en kiu temas pri aksiomoj kaj aksiomigo, nomiĝas aksiomiko. (eo)
  • Un axioma es una proposición asumida dentro de un cuerpo teórico sobre la cual descansan otros razonamientos y proposiciones deducidas de esas premisas.​ Introducido originalmente por los matemáticos griegos del período helenístico, el axioma se consideraba como una proposición «evidente» y que se aceptaba sin requerir demostración previa. ​Posteriormente, en un sistema hipotético-deductivo, un axioma era toda proposición no deducida de otras, sino que constituye una regla general de pensamiento lógico (por oposición a los postulados).​ Así en lógica y matemáticas, un axioma es solo una premisa que se asume, con independencia de que sea o no evidente, y que se usa para demostrar otras proposiciones. Actualmente se busca qué consecuencias lógicas comportan un conjunto de axiomas, y de hecho en algunos casos se opta por introducir un axioma o bien su contrario, viendo que ninguna de las dos parece una proposición evidente. Así, si tradicionalmente los axiomas se elegían de entre «afirmaciones evidentes», con el objetivo de deducir el resto de proposiciones, en la moderna teoría de modelos un axioma es solo una asunción, y en modo alguno se considera que la verdad o falsedad de los axiomas dependa del sentido intuitivo que se le pueda atribuir, o se recurre a que puedan ser autoevidentes. En lógica un postulado es una proposición no necesariamente evidente: una fórmula bien formada (planteada) de un lenguaje formal utilizada en una deducción para llegar a una conclusión. En matemática se distinguen dos tipos de proposiciones: axiomas lógicos y postulados. (es)
  • Axioma esparru teoriko batean egiazkotzat jotzen den baieztapena da, gainontzeko arrazoiketa eta azalpenak egiteko premisa edo abiapuntu gisa hartzen dena. Grezierako axíōma (ἀξίωμα) hitzetik dator: “duin edo egoki gisa hartua” edo “ageriko gisa gomendatzen dena”. Garai helenistikoko greziar matematikariek mahai-gaineratutako termino honek esanahi ezberdinak ditu diziplina edo ikerketaren adar ezberdinetan erabiltzen denean. rentzat axioma baieztapen ebidente edo era sendoan ezarritakoa da, ezbairik gabe onartzen dena. Logika modernoan, berriz, axioma arrazoiketarako premisa edo abiapuntu soil bat da. Logikan adibidez, axioma beste baieztapen batzuk egiteko oinarri gisa hartzen den premisa da, ez duena zertan ebidentea izan. Tradizionalki axiomak baieztapen ageriko edo ebidenteen artean hautatzen ziren, ondorengo egitateak ondorioztatzeko asmoz. Egun, berriz, ereduen teoria modernoan, axioma multzo baten ondorio logikoak zein diren aztertzen da, zenbaitetan axioma bat edo bere kontrakoarekin saiakera egiten delarik, baieztapen ebidenteak ez direla ondorioztatzen bada. Izan ere, axiomaren egiazkotasuna edo faltsutasuna, nolabait, zentzu intuitiboaren araberakoa da; edo bere baitan ebidenteak direla esaten da. Matematikan axioma logiko eta ez logikoak bereizten dira. Bi kasuetan axioma baieztapen matematikoak frogatzeko abiapuntutzat balio duen oinarrizko baieztapen bat da, baina badaude bien arteko aldeak. Axioma logikoak bere logika sistemaren baitan (adibidez, A eta B-k A inplikatzen dute) egiatzat hartzen diren baieztapenak dira eta askotan, forma sinbolikoan adierazten dira. Axioma ez logikoak (A+B=B+A esaterako), aldiz, teoria matematiko zehatz bateko elementuen inguruko baieztapen sustantiboak dira, propietate matematikoak. (eu)
  • Un axiome (en grec ancien : ἀξίωμα /axioma, « principe servant de base à une démonstration, principe évident en soi » – lui-même dérivé de άξιόω (axioô), « juger convenable, croire juste ») est une proposition non démontrée, utilisée comme fondement d’un raisonnement ou d’une théorie mathématique. (fr)
  • Tairiscint a ghlactar a bheith fíor agus ar féidir staidéar eile a bhunú uirthi. Is iad aicsímí gheoiméadracht Eoiclíd na haicsímí is cáiliúla, mar atá: (a) is féidir líne dhíreach a tharraingt ó phointe amháin go pointe eile; (b) is féidir líne chríochta dhíreach a shíneadh ag an dá cheann; (c) is féidir ciorcal a tharraingt i gcónaí le pointe ar bith mar lárphointe is le ga ar bith; (d) is comhionann aon dá dhronuillinn; (e) má bhuaileann líne dhíreach le dhá líne dhíreacha eile ionas go bhfuil an dá uillinn ar thaobh amháin di níos lú ná dhá dhronuillinn nuair a shuimítear iad, tiocfaidh an dá líne eile le chéile ar an taobh sin den chéad line. Shaothraigh Hilbert sraith aicsímí níos iomláine déine don gheoiméadracht Eoiclídeach i 1899. Is comhghnásach bunús aicsímeach a bheith faoi gach cineál matamaitice anois. (ga)
  • Aksioma, postulat atau asumsi adalah pernyataan yang berfungsi sebagai premis atau titik awal untuk alasan dan argumen lebih lanjut. Aksioma diartikan juga sebagai suatu pernyataan yang memuat istilah dasar dan istilah terdefinisi dan tidak berdiri sendiri dan tidak diuji kebenarannya. Akan tetapi, aksioma dalam matematika bukan berarti proposisi yang terbukti dengan sendirinya. Melainkan, suatu titik awal dari sistem logika. Misalnya, Nama lain dari aksioma adalah postulat. Suatu aksioma adalah basis dari sistem logika formal yang bersama-sama dengan aturan inferensi mendefinisikan logika. Pada akhirnya aksioma merupakan sebuah pernyataan yang sudah pasti kebenarannya. Istilah aksioma paling umum digunakan sebagai istilah dalam matematika, sasaran atau objek penelahan matematika yang berupa fakta, konsep, operasi dan prinsip memerlukan metode tertentu dalam menemukan kebenaran atau keabsahan dari konsep yang terkandung didalamnya. Objek penelaahan tersebut menggunakan simbol-simbol yang kosong dari arti, artinya bahwa setiap simbol yang digunakan dalam matematika merupakan simbol abstrak. Ciri ini yang memungkinkan matematika dapat memasuki wilayah bidang studi atau cabang ilmu lain. Pada hakekatnya berpikir matematika itu dilandasi oleh kesepakatan-kesepakatan yang disebut aksioma. Karena itu matematika merupakan sistem yang aksiomatik. Salah satu fenomena tentang aksioma yang ada adalah Selama 2000 tahun aksioma tentang bilangan dan geometri dianggap sebagai suatu kebenaran yang pasti karena teorema merupakan konsekuensi logis dari aksioma, maka teorema pun dianggap sebagai kebenaran yang tidak terbantahkan lagi. (in)
  • 公理(こうり、(英: axiom)は、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを公理系 (axiomatic system) という。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。 (ja)
  • In matematica si chiamano postulati o assiomi tutti e soli gli enunciati che, pur non essendo stati dimostrati, sono considerati veri. Generalmente forniscono il punto di partenza per delineare un quadro teorico come può essere quello della teoria degli insiemi, della geometria, dell'aritmetica, della teoria dei gruppi o nel calcolo delle probabilità. Nella logica matematica l'idea di assioma e dimostrazione viene completamente formalizzata. Gli assiomi di una teoria proposizionale o di una teoria del primo ordine sono un ben definito insieme di formule che possono essere usate nella teoria per costruire dimostrazioni formali. In questo ambito si fa una netta distinzione tra le due nozioni di assioma logico e assioma non-logico. (it)
  • 공리(公理, 영어: axiom)는 논리학이나 수학 등의 이론체계에서 가장 기초적인 근거가 되는 명제(命題)이다. 증명할 필요가 없이 자명한 진리이자 다른 명제들을 증명하는 데 전제가 되는 원리로서 가장 기본적인 가정을 가리킨다.지식이 참된 것이 되기 위해서는 근거가 필요하나 근거를 소급해 보면 더 이상 증명하기가 곤란한 명제에 다다른다. 이것이 바로 공리이다. 참고로 증명이 필요한 명제중 증명이 완료된 명제를 정리라고 한다. 어떤 한 형식체계에 관한 논의를 위한 전제로 주어진 공리들의 집합을 공리계(公理系)라고 부른다. 한편, 공리를 그 전제로 시작하여, 연역적 수단에 의해 유도되는 명제는 정리(定理)라고 한다. 공리 외에 공준(公準, 영어: postulate)이라는 용어도 사용되며, '공리'가 여러 학문적 영역에서 공통으로 적용될 수 있는 자명한 가정을 가리킴에 반해, '공준'은 각 영역별로 자명하게 받아들여지는 가정을 일컫는 말이나 현대에 들어서는 이 두 단어를 같은 의미로 쓰는 경우가 일반적이다. (ko)
  • Een axioma (of postulaat) is in de wiskunde en de logica, sinds Euclides en Aristoteles, een niet bewezen, maar als grondslag aanvaarde bewering. Een axioma dient als grondslag voor het bewijs van andere wiskundige beweringen of stellingen. Een axioma maakt deel uit van een deductief systeem. In de wiskundige logica heet een deductief systeem een theorie. Bij het opstellen van een theorie gelden de volgende beperkingen: * axioma's mogen niet met elkaar in tegenspraak zijn; * een axioma mag niet uit andere axioma's afgeleid kunnen worden. Als axioma's met elkaar in tegenspraak zijn, dan is een theorie inconsistent. Een axioma dat uit andere axioma's afgeleid kan worden, is geen axioma, maar een bewezen stelling. Een verzameling van axioma's is dan ook de kleinst mogelijke verzameling van veronderstellingen die een theorie mogelijk maken. Het woord komt van het Griekse axíōma (ἀξίωμα) 'dat wat waardig of geschikt wordt geacht' of 'dat wat zichzelf aanbeveelt als evident'. (nl)
  • Na lógica tradicional, um axioma ou postulado é uma sentença ou proposição que não é provada ou demonstrada e é considerada como óbvia ou como um consenso inicial necessário para a construção ou aceitação de uma teoria. Por essa razão, é aceito como verdade e serve como ponto inicial para dedução de outras verdades (dependentes de teoria). Na matemática, um axioma é uma hipótese inicial de qual outros enunciados são logicamente derivados. Pode ser uma sentença, uma proposição, um enunciado ou uma regra que permite a construção de um sistema formal. Diferentemente de teoremas, axiomas não podem ser derivados por princípios de dedução e nem são demonstráveis por derivações formais, simplesmente porque eles são hipóteses iniciais. Isto é, não há mais nada a partir do que eles seguem logicamente (em caso contrário eles seriam chamados teoremas). Em muitos contextos, "axioma", "postulado" e "hipótese" são usados como sinônimos. Como foi visto na definição, um axioma não é necessariamente uma verdade autoevidente, mas apenas uma expressão lógica formal usada em uma dedução, visando obter resultados mais facilmente. Axiomatizar um sistema é mostrar que suas inferências podem ser derivadas a partir de um pequeno e bem definido conjunto de sentenças. Isto não significa que elas possam ser conhecidas independentemente, e tipicamente existem múltiplos meios para axiomatizar um dado sistema (como a aritmética). A matemática distingue dois tipos de axiomas: axiomas lógicos e axiomas não-lógicos. Nas teorias das ciências naturais, um axioma é considerado uma verdade evidente que e é aceita como tal mas que ao rigor da palavra não pode ser demonstrado ou provado uma verdade absoluta dentro do domínio de sua aplicação; é geralmente derivado de intuição ou de conhecimento empírico, os quais apoiam-se em todos os fatos científicos até então conhecidos e relevantes à área em estudo. A viabilidade ou utilidade de tais teorias, e a classificação das mesmas como teorias científicas válidas ou já aprimoradas, todas sempre logicamente derivadas de forma correta de suas premissas (dos axiomas), dependem das escolhas acuradas de seus axiomas e da corroboração dos mesmos frente aos fatos científicos conhecidos na época em que foram propostos, e frente aos que forem gradualmente descobertos em épocas futuras às suas proposições. Fatos novos, ao serem descobertos, podem levar à evolução das teorias mediante necessidade explicita de modificações em seus axiomas, que, conforme propostos no paradigma científico evoluído e ora válido, devem manter-se sempre corroborados pela íntegra dos fatos científicos conhecidos até a data em questão. Na engenharia, axiomas são aceitos sem provas formais e suas escolhas são negociadas a partir do ponto de vista utilitário e econômico. Podem também ser considerados como hipóteses na modelagem e mudados depois da validação do modelo. Declarações explícitas de axiomas é uma condição necessária para a computabilidade de uma teoria, modelo ou método. Neste caso, o axioma pode ser visto como um conceito relativo dependente de domínio, por exemplo, em cada programa de software, declarações iniciais podem ser consideradas como seus axiomas locais. (pt)
  • Aksjomat, postulat, pewnik (gr. ἀξίωμα axíōma, godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna: Aksjomaty są zdaniami wyodrębnionymi spośród wszystkich twierdzeń danej teorii, wybranymi tak, aby wynikały z nich wszystkie pozostałe twierdzenia tej teorii. Taki układ aksjomatów nazywany jest aksjomatyką. (pl)
  • Ett axiom (latin axioma, av gr ἀξίωμα, 'värde', 'åsikt') är i vardagliga sammanhang ett självklart påstående vars sanningshalt inte kan betvivlas. Inom logik är ett axiom en grundsats i ett deduktivt system som inte kan bevisas inom ramen för systemet i fråga. I den äldre vetenskapsteoretiska traditionen antog man att axiomen måste vara uppenbart sanna, och att ett bevis för ett axiom var överflödigt eftersom axiomets giltighet insågs omedelbart. I modernare teorier har denna tanke övergivits för en syn som helt bygger på konventioner, utan hänvisning till begrepp som sanning eller falskhet. Axiomen är helt enkelt de satser vilka man kommit överens om att använda som grund. Ett system, vars fundament är ett antal axiom, kallas för ett axiomatiserat system och i ett sådant benämns de satser, som kan härledas med hjälp av axiomen, för teorem. Alla härledda satser som inte är axiom är således teorem. I formella system är axiomen definierade utan hänvisning till någon tolkning. Exempel på axiomatiskt uppbyggda system är geometrien i Euklides Elementa, Peanos axiomsystem och satslogikens formella system. (sv)
  • 在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b=b+a」。 不同的系統,會預計不同的公理。例如非歐幾何的公理,和歐氏幾何的公理就有一點不同;另外,集合論的選擇公理在許多系統的建構中,也富有爭議。有些系統堅持不預設選擇公理。也有一些數學家在建構系統時,刻意排除掉皮亞諾公理中的數學歸納法,以確保所有的證明,都可以直接演算。 在數學中,公理這一詞被用於兩種相關但相異的意思之下——和。在這兩種意義之下,公理都是用来推導其他命题的起点。和定理不同,一個公理(除非有冗餘的)不能被其他公理推導出來,否則它就不是起點本身,而是能夠從起點得出的某種結果—可以乾脆被歸為定理了。 邏輯公理通常是被視為普遍為真的陳述(如 (A ∧ B) → A),而非邏輯公理(如a + b = b + a)則實際上是在一特定數學理論(如算術)中的定義性的性質。在後者的意思之下,公理又可被稱為「公設」。一般而言,非邏輯公理並不是一個不證自明的事實,而应该說是在建構一個數學理論的過程中被用來推導的一個形式邏輯表示式。要公理化一個知識系統,就是要去證明該系統的主張都可以由數目不多而又可明確理解的陳述(公理)推導出來。一般來說都有多種方法來公理化一個給定的數學領域。 然而,邏輯公理系統也並非唯一。直覺主義邏輯、模糊邏輯等新的邏輯結構,都建立在略有差異的公理上。因此,與其把公理看作不證自明的事實,不如看作是在一個特定的數學或邏輯系統中,先於一切證明的前設。 (zh)
  • Аксіо́ма (грец. axiōma; кор. axio (достойність), укр. гідність, гідне) — твердження, яке вважається правильним без доведення, щоб слугувати точкою початку роздумів і аргументів. Синонім — постулат. 1. * Вихідне положення, самоочевидний принцип. У дедуктивних наукових теоріях аксіомами називають основні вихідні положення чи твердження якоїсь теорії, що приймаються без доведень і з яких шляхом дедукції, тобто чисто логічними засобами, одержують весь інший її зміст. (Див. Аксіоматичний метод) 2. * У переносному значенні — те, що не потребує жодних доведень. 3. * Твердження, заперечення якого заперечує основи логічного мислення. (uk)
  • Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение»), или постула́т (от лат. postulatum — букв. требуемое), — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 928 (xsd:integer)
dbo:wikiPageLength
  • 35370 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1069773447 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • June 2019 (en)
dbp:reason
  • use of past tense without explanation of change (en)
dbp:title
  • Axiom (en)
dbp:urlname
  • Axiom (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • Axiom (z řec. axióma, to co se uznává) je tvrzení, které se předem pokládá za platné, a tudíž se nedokazuje. Podobný význam má slovo postulát. (cs)
  • Ein Axiom (von griechisch ἀξίωμα axíoma, „Forderung; Wille; Beschluss; Grundsatz; philos. (...) Satz, der keines Beweises bedarf“, „Wertschätzung, Urteil, als wahr angenommener Grundsatz“) ist ein Grundsatz einer Theorie, einer Wissenschaft oder eines axiomatischen Systems, der innerhalb dieses Systems weder begründet noch deduktiv abgeleitet, sondern als Grundlage willentlich akzeptiert oder gesetzt wird. (de)
  • Aksiomo estas principo (baza aserto), kiu estas akceptata sen pruvo en scienca teorio aŭ deduktiva sistemo. La vorto aksiomo devenas de greka αξιωμα [aksioma] - kiu signifas "io inda aŭ memevidenta". Aksiomoj kies valideco ne estas tiel evidenta ankaŭ estas nomataj ”postulatoj”. Parenca nocio estas ”dogmo”. Subfako de filozofio, en kiu temas pri aksiomoj kaj aksiomigo, nomiĝas aksiomiko. (eo)
  • Un axiome (en grec ancien : ἀξίωμα /axioma, « principe servant de base à une démonstration, principe évident en soi » – lui-même dérivé de άξιόω (axioô), « juger convenable, croire juste ») est une proposition non démontrée, utilisée comme fondement d’un raisonnement ou d’une théorie mathématique. (fr)
  • 公理(こうり、(英: axiom)は、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを公理系 (axiomatic system) という。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。 (ja)
  • 공리(公理, 영어: axiom)는 논리학이나 수학 등의 이론체계에서 가장 기초적인 근거가 되는 명제(命題)이다. 증명할 필요가 없이 자명한 진리이자 다른 명제들을 증명하는 데 전제가 되는 원리로서 가장 기본적인 가정을 가리킨다.지식이 참된 것이 되기 위해서는 근거가 필요하나 근거를 소급해 보면 더 이상 증명하기가 곤란한 명제에 다다른다. 이것이 바로 공리이다. 참고로 증명이 필요한 명제중 증명이 완료된 명제를 정리라고 한다. 어떤 한 형식체계에 관한 논의를 위한 전제로 주어진 공리들의 집합을 공리계(公理系)라고 부른다. 한편, 공리를 그 전제로 시작하여, 연역적 수단에 의해 유도되는 명제는 정리(定理)라고 한다. 공리 외에 공준(公準, 영어: postulate)이라는 용어도 사용되며, '공리'가 여러 학문적 영역에서 공통으로 적용될 수 있는 자명한 가정을 가리킴에 반해, '공준'은 각 영역별로 자명하게 받아들여지는 가정을 일컫는 말이나 현대에 들어서는 이 두 단어를 같은 의미로 쓰는 경우가 일반적이다. (ko)
  • Aksjomat, postulat, pewnik (gr. ἀξίωμα axíōma, godność, pewność, oczywistość) – jedno z podstawowych pojęć logiki matematycznej. Od czasów Euklidesa uznawano, że aksjomaty to zdania przyjmowane za prawdziwe, których nie dowodzi się w obrębie danej teorii matematycznej. We współczesnej matematyce definicja aksjomatu jest nieco inna: Aksjomaty są zdaniami wyodrębnionymi spośród wszystkich twierdzeń danej teorii, wybranymi tak, aby wynikały z nich wszystkie pozostałe twierdzenia tej teorii. Taki układ aksjomatów nazywany jest aksjomatyką. (pl)
  • Аксіо́ма (грец. axiōma; кор. axio (достойність), укр. гідність, гідне) — твердження, яке вважається правильним без доведення, щоб слугувати точкою початку роздумів і аргументів. Синонім — постулат. 1. * Вихідне положення, самоочевидний принцип. У дедуктивних наукових теоріях аксіомами називають основні вихідні положення чи твердження якоїсь теорії, що приймаються без доведень і з яких шляхом дедукції, тобто чисто логічними засобами, одержують весь інший її зміст. (Див. Аксіоматичний метод) 2. * У переносному значенні — те, що не потребує жодних доведень. 3. * Твердження, заперечення якого заперечує основи логічного мислення. (uk)
  • Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение»), или постула́т (от лат. postulatum — букв. требуемое), — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами. (ru)
  • المُسلَّمة أو الموضوعة أو البديهِيَّة (باليونانية: أكسيوما αξιωμα)‏ هي منطقٌ أو قضيَّةٌ أو مبدأٌ يُسلَّم به دون برهان أو دلائل تسنده؛ لأنّه واضح كالمبادئ العقلية والأوليَّات والضروريَّات. يمكن أن تكون المسلمة هي العبارة، الافتراض، المقولة أو القاعدة التي تشكل أساسًا للنظام الشكلي. بخلاف المبرهنات، المسلمات لا يمكن أن تشتق بمبادئ الاستنتاج، كما لا يمكن اثباتها عن طريق برهان شكلي - ببساطة لأنها مقدمات مفترضة - ليس هناك شيء آخر تستنتج منه منطقيًا (والا سيفترض تسميتها نظريات). (ar)
  • To αξίωμα ή αρχή στη λογική, είναι μια πρόταση η οποία δεν αποδεικνύεται, αλλά θεωρείται είτε προφανής, ή αποτέλεσμα κάποιας απόφασης. Έτσι, αξίωμα είναι μια λογική πρόταση, της οποίας η αλήθεια θεωρείται δεδομένη και χρησιμεύει ως αρχικό σημείο για την αναγωγή και το συμπέρασμα άλλων αληθών προτάσεων, ανάλογα με τη θεωρία που εφαρμόζεται. Το σύνολο αυτό υπόκειται σε δύο περιορισμούς: α) τα αξιώματα να είναι συμβιβαστά, και β) ανεξάρτητα το ένα από το άλλο. Ακόμη θα πρέπει το πλήθος των αξιωμάτων να είναι όσο το δυνατό λιγότερο. (el)
  • An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. Any axiom is a statement that serves as a starting point from which other statements are logically derived. Whether it is meaningful (and, if so, what it means) for an axiom to be "true" is a subject of debate in the philosophy of mathematics. (en)
  • Axioma esparru teoriko batean egiazkotzat jotzen den baieztapena da, gainontzeko arrazoiketa eta azalpenak egiteko premisa edo abiapuntu gisa hartzen dena. Grezierako axíōma (ἀξίωμα) hitzetik dator: “duin edo egoki gisa hartua” edo “ageriko gisa gomendatzen dena”. (eu)
  • Un axioma es una proposición asumida dentro de un cuerpo teórico sobre la cual descansan otros razonamientos y proposiciones deducidas de esas premisas.​ Introducido originalmente por los matemáticos griegos del período helenístico, el axioma se consideraba como una proposición «evidente» y que se aceptaba sin requerir demostración previa. ​Posteriormente, en un sistema hipotético-deductivo, un axioma era toda proposición no deducida de otras, sino que constituye una regla general de pensamiento lógico (por oposición a los postulados).​ Así en lógica y matemáticas, un axioma es solo una premisa que se asume, con independencia de que sea o no evidente, y que se usa para demostrar otras proposiciones. Actualmente se busca qué consecuencias lógicas comportan un conjunto de axiomas, y de hecho (es)
  • Tairiscint a ghlactar a bheith fíor agus ar féidir staidéar eile a bhunú uirthi. Is iad aicsímí gheoiméadracht Eoiclíd na haicsímí is cáiliúla, mar atá: (a) is féidir líne dhíreach a tharraingt ó phointe amháin go pointe eile; (b) is féidir líne chríochta dhíreach a shíneadh ag an dá cheann; (c) is féidir ciorcal a tharraingt i gcónaí le pointe ar bith mar lárphointe is le ga ar bith; (d) is comhionann aon dá dhronuillinn; (e) má bhuaileann líne dhíreach le dhá líne dhíreacha eile ionas go bhfuil an dá uillinn ar thaobh amháin di níos lú ná dhá dhronuillinn nuair a shuimítear iad, tiocfaidh an dá líne eile le chéile ar an taobh sin den chéad line. Shaothraigh Hilbert sraith aicsímí níos iomláine déine don gheoiméadracht Eoiclídeach i 1899. Is comhghnásach bunús aicsímeach a bheith faoi gac (ga)
  • Aksioma, postulat atau asumsi adalah pernyataan yang berfungsi sebagai premis atau titik awal untuk alasan dan argumen lebih lanjut. Aksioma diartikan juga sebagai suatu pernyataan yang memuat istilah dasar dan istilah terdefinisi dan tidak berdiri sendiri dan tidak diuji kebenarannya. Akan tetapi, aksioma dalam matematika bukan berarti proposisi yang terbukti dengan sendirinya. Melainkan, suatu titik awal dari sistem logika. Misalnya, Nama lain dari aksioma adalah postulat. Suatu aksioma adalah basis dari sistem logika formal yang bersama-sama dengan aturan inferensi mendefinisikan logika. Pada akhirnya aksioma merupakan sebuah pernyataan yang sudah pasti kebenarannya. (in)
  • In matematica si chiamano postulati o assiomi tutti e soli gli enunciati che, pur non essendo stati dimostrati, sono considerati veri. Generalmente forniscono il punto di partenza per delineare un quadro teorico come può essere quello della teoria degli insiemi, della geometria, dell'aritmetica, della teoria dei gruppi o nel calcolo delle probabilità. (it)
  • Een axioma (of postulaat) is in de wiskunde en de logica, sinds Euclides en Aristoteles, een niet bewezen, maar als grondslag aanvaarde bewering. Een axioma dient als grondslag voor het bewijs van andere wiskundige beweringen of stellingen. Een axioma maakt deel uit van een deductief systeem. In de wiskundige logica heet een deductief systeem een theorie. Bij het opstellen van een theorie gelden de volgende beperkingen: * axioma's mogen niet met elkaar in tegenspraak zijn; * een axioma mag niet uit andere axioma's afgeleid kunnen worden. (nl)
  • Na lógica tradicional, um axioma ou postulado é uma sentença ou proposição que não é provada ou demonstrada e é considerada como óbvia ou como um consenso inicial necessário para a construção ou aceitação de uma teoria. Por essa razão, é aceito como verdade e serve como ponto inicial para dedução de outras verdades (dependentes de teoria). Na engenharia, axiomas são aceitos sem provas formais e suas escolhas são negociadas a partir do ponto de vista utilitário e econômico. Podem também ser considerados como hipóteses na modelagem e mudados depois da validação do modelo. (pt)
  • Ett axiom (latin axioma, av gr ἀξίωμα, 'värde', 'åsikt') är i vardagliga sammanhang ett självklart påstående vars sanningshalt inte kan betvivlas. Inom logik är ett axiom en grundsats i ett deduktivt system som inte kan bevisas inom ramen för systemet i fråga. I den äldre vetenskapsteoretiska traditionen antog man att axiomen måste vara uppenbart sanna, och att ett bevis för ett axiom var överflödigt eftersom axiomets giltighet insågs omedelbart. I modernare teorier har denna tanke övergivits för en syn som helt bygger på konventioner, utan hänvisning till begrepp som sanning eller falskhet. Axiomen är helt enkelt de satser vilka man kommit överens om att använda som grund. (sv)
  • 在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b=b+a」。 不同的系統,會預計不同的公理。例如非歐幾何的公理,和歐氏幾何的公理就有一點不同;另外,集合論的選擇公理在許多系統的建構中,也富有爭議。有些系統堅持不預設選擇公理。也有一些數學家在建構系統時,刻意排除掉皮亞諾公理中的數學歸納法,以確保所有的證明,都可以直接演算。 在數學中,公理這一詞被用於兩種相關但相異的意思之下——和。在這兩種意義之下,公理都是用来推導其他命题的起点。和定理不同,一個公理(除非有冗餘的)不能被其他公理推導出來,否則它就不是起點本身,而是能夠從起點得出的某種結果—可以乾脆被歸為定理了。 然而,邏輯公理系統也並非唯一。直覺主義邏輯、模糊邏輯等新的邏輯結構,都建立在略有差異的公理上。因此,與其把公理看作不證自明的事實,不如看作是在一個特定的數學或邏輯系統中,先於一切證明的前設。 (zh)
rdfs:label
  • Axiom (en)
  • مسلمة (فلسفة) (ar)
  • Axiom (cs)
  • Axioma (ca)
  • Axiom (de)
  • Αξίωμα (el)
  • Aksiomo (eo)
  • Axioma (es)
  • Axioma (eu)
  • Axiome (fr)
  • Aicsím (ga)
  • Aksioma (in)
  • Assioma (matematica) (it)
  • 公理 (ja)
  • 공리 (ko)
  • Axioma (pt)
  • Aksjomat (pl)
  • Axioma (nl)
  • Axiom (sv)
  • Аксиома (ru)
  • Аксіома (uk)
  • 公理 (zh)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:associatedBand of
is dbo:associatedMusicalArtist of
is dbo:notableIdea of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:associatedActs of
is gold:hypernym of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License