An integer (from the Latin integer meaning "whole") is colloquially defined as a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5+1/2, and √2 are not. The set of integers consists of zero (0), the positive natural numbers (1, 2, 3, ...), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e., −1, −2, −3, ...). The set of integers is often denoted by a boldface letter ‘Z’ ("Z") or blackboard bold (Unicode U+2124 ℤ) standing for the German word Zahlen ([ˈtsaːlən], "numbers").

Property Value
dbo:abstract
  • العدد الصحيح (بالإنجليزية: Integer Number) هو عدد يُمكن كتابته بدون استخدام الكسور أو الفواصل العشرية، وتتكون مجموعة الأعداد الصحيحة والتي تعتبر مجموعة جزئية من مجموعة الأعداد الحقيقية- من الأعداد الطبيعة (1، 2، 3، ..) والصفر والأعداد السالبة المقابلة للأعداد الطبعيية (-1، -2، -3، ..)، وعليه فمجموعة الأعداد الصحيحة تكون مجموعة غير منتهية شأنها في ذلك شأن مجموعة الأعداد الطبيعية، وعادة ما يرمز لها بالحرف اللاتيني Z. (ar)
  • Els nombres enters són els que designen quantitats no fraccionables en parts més petites que la unitat. Per exemple −3, 80, −4 o 2019 són enters, mentre que ; −1,5; 3,14; o no ho són. Els enters es poden qualificar també amb l'adjectiu "sencer": que no hi manca cap part. Aquesta no és, però, forma correcte d'anomenar-los. Són una extensió dels nombres naturals de forma que a més de comptar coses, permeten comptabilitzar pèrdues o deutes. També són necessaris en magnituds com les altures o la temperatura en què cal considerar valors per sobre o per sota de zero. El conjunt dels nombres enters es representa amb el símbol , la lletra inicial de la paraula alemanya Zahlen (nombre). El conjunt dels nombres enters , està format per: * Els nombres naturals anomenats també enters positius: . S'escriuen tant amb el signe més (+) al davant com sense. Si un nombre no porta el signe +, se sobreentén que és positiu. * El nombre 0 (zero) El zero és l'únic nombre enter que no és positiu ni negatiu. * Nombres enters negatius: S'escriuen sempre amb el signe menys (−) al davant, Aquest signe menys forma part de la designació del nombre, no indica l'operació resta. Matemàticament, el conjunt dels nombres enters amb les operacions de suma i multiplicació, , constitueix una estructura algebraica d'anell commutatiu i unitari. és també un conjunt infinit numerable completament ordenat sense fita superior i tampoc fita inferior. La branca de les matemàtiques que estudia les propietats dels nombres enters s'anomena teoria de nombres. (ca)
  • Celá čísla se skládají z přirozených čísel (1, 2, 3, …), nuly (0) a záporných celých čísel (-1, -2, -3, …). Množina celých čísel se v matematice většinou označuje Z, nebo , podle Zahlen (německy čísla). Podobně jako přirozená čísla, tvoří celá čísla nekonečnou spočetnou množinu. Studiem celých čísel se zabývá teorie čísel. (cs)
  • Ακέραιοι ονομάζονται όλοι οι φυσικοί αριθμοί μαζί με τους αντίθετούς τους και το μηδέν. Το σύνολο των ακεραίων δηλαδή το σύνολο: συμβολίζεται με το γράμμα , αρχικό της λέξης Zahl που στα γερμανικά σημαίνει αριθμός. Το σύνολο ορίζεται επίσης ως εξής: . Όπως και το σύνολο των φυσικών, το σύνολο των ακεραίων είναι άπειρο αριθμήσιμο με πληθάριθμο (άλεφ-μηδέν). (el)
  • An integer (from the Latin integer meaning "whole") is colloquially defined as a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5+1/2, and √2 are not. The set of integers consists of zero (0), the positive natural numbers (1, 2, 3, ...), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e., −1, −2, −3, ...). The set of integers is often denoted by a boldface letter ‘Z’ ("Z") or blackboard bold (Unicode U+2124 ℤ) standing for the German word Zahlen ([ˈtsaːlən], "numbers"). ℤ is a subset of the set of all rational numbers ℚ, in turn a subset of the real numbers ℝ. Like the natural numbers, ℤ is countably infinite. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers. In fact, the (rational) integers are the algebraic integers that are also rational numbers. (en)
  • La entjeroj (aŭ plenaj nombroj) konsistas el la naturaj nombroj (1, 2, 3, …), la respondaj negativaj nombroj (−1, −2, −3, …) kaj 0 (nulo). Matematikistoj kutime signas la aron de la entjeroj per aŭ Z. La naturaj nombroj estas subaro de la entjeroj, kion oni signas per ⊂ . La nocio de negativa nombro aperis pro la bezonoj de evoluo de algebro, kiu donis komunajn principojn solvi aritmetikajn problemojn, sendepende de ilia konkreta enhavo kaj valoroj de originaj nombrosignifoj. Probable, negativa respondo povas esti komprenita kiel grando de inversa direkto, ekz. movo en iu aŭ en ĝia inversa direkto, posedi havaĵon aŭ havi ŝuldon, ktp. Ankoraŭ en 6-11 jarcentoj en Hindio, oni regule uzis negativajn nombrojn ĝuste en tiu senco, kion ili havas en nuntempo. Sed en Eŭropa scienco ĝi eniris difinitive nur de tempoj de Kartezio (17 jc), kiu donis al negativaj nombroj la signifon de direktitaj eltranĉoj. Entjeroj povas esti paraj kaj neparaj. Paraj nombroj oni konsideras tiujn, kiuj dividiĝas je la nombro 2 sen resto, ekz. −4, −2, 0, 2, 4; la aliajn nombrojn el la nefinia vico de entjeroj oni nomas neparaj nombroj, ekz-e −5, −3, −1, 1, 3, 5. Por konstati la parecon de grandaj nombroj, ni rigardas al la fina cifero; se ĝi estas 0, 2, 4, 6, 8 (ekz. 3843924), ĝi estas para nombro, kontraŭokaze (1991) ĝi estas nepara. La entjero m estas nomata divizoro de la entjero n, se la kvociento de n per m ankaŭ estas entjero. Ekz-e 3 estas divizoro de 9, kaj 1, 2, 3, 4, 6, 12 estas ĉiuj pozitivaj divizoroj de 12. Alia grava koncepto estas plej granda komuna divizoro (pgkd) de du nombroj. Ekzemple pgkd(12,16)=4, ĉar 4 estas la plej granda entjero, kiu estas kaj divizoro de 12 kaj divizoro de 16. (eo)
  • Die ganzen Zahlen (auch Ganzzahlen, lat. numeri integri) sind eine Erweiterung der natürlichen Zahlen. Die ganzen Zahlen umfassen alle Zahlen …, −3, −2, −1, 0, 1, 2, 3, … und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das „Z“ steht für das deutsche Wort „Zahlen“). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ℤ. Die obige Aufzählung der ganzen Zahlen gibt auch gleichzeitig in aufsteigender Folge deren natürliche Anordnung wieder. Die Zahlentheorie ist der Zweig der Mathematik, der sich mit Eigenschaften der ganzen Zahlen beschäftigt. Die Repräsentation ganzer Zahlen im Computer erfolgt üblicherweise durch den Datentyp Integer. Die ganzen Zahlen werden im Mathematikunterricht üblicherweise in der fünften bis siebten Klasse eingeführt. (de)
  • Un número entero es un elemento del conjunto numérico que contiene los números naturales , sus opuestos y el cero.​ Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que cero y todos los enteros positivos. Para resaltar la diferencia entre positivos y negativos, se puede escribir un signo «más» delante de los positivos: +1, +5, etc. Y si no se escribe signo al número se asume que es positivo. El conjunto de todos los números enteros se representa por la letra letra inicial del vocablo alemán Zahlen («números», pronunciado [ˈtsaːlən]). En la recta numérica los números negativos se encuentran a la izquierda del cero y los positivos a su derecha. Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, siguiendo el modelo de los números naturales añadiendo unas normas para el uso del signo. Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos. Ciertas magnitudes como la temperatura o la altura usan valores por debajo del cero. La altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del mar Muerto está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m. (es)
  • Zenbaki osoen multzoan zenbaki arruntak biltzen dira (0,1,2,...), beren aurkakoekin batera (-0,-1,-2,...). -0 eta 0 berdintzat jotzen dira. Zenbaki osoen multzoa Z hizkiaz izendatu ohi da ('Zahlen' germanierazko hitzetik). Zenbaki osoak batu, kendu eta biderkatu egin daitezke: emaitza beti izango da zenbaki oso bat. x+a=b motako ekuazioen soluzioa, non a eta b zenbaki osoak diren, zenbaki osoa izango da. Zenbaki arrunten kasuan ez da esaterako gauza bera gertatzen. Zorrotzago, zenbaki osoen multzoak, batuketa eta biderketa eragiketak definitu ondoren, osatzen duela esan behar da. (eu)
  • Is iad na slánuimhir na uimhreacha aiceanta {0, 1, 2, 3, 4, ... } mar aon leis an dhiúl do na huimhreacha aiceanta dheimhneach { -1, -2, -3, -4, ...}. Is fo-thacar iad na slánuimhir {..., -2, -1, 0, 1, 2, ...} do na réaduimhir. Is tacar éigríochta iad na slánuimhir freisin. Úsáidtear an siombail chun an tacar iomlán do uimhreacha aiceanta a léiriú: Úsáidtear an focal Slánuimhir i ríomhchlárú freisin. Is cineál sonraí bunúsach é slánuimhir. Chuirtear é in iúil le 'int' i roinnt ríomhchlár, Java ina measc. San cás seo, ní tacar éigríochta atá i gceist san gcás seo. (ga)
  • Bilangan bulat terdiri dari bilangan cacah (0, 1, 2, 3, ...) dan negatifnya (-1, -2, -3, ...; -0 adalah sama dengan 0 sehingga tidak lagi dimasukkan secara terpisah). Bilangan bulat dapat dituliskan tanpa komponen desimal atau pecahan. Himpunan semua bilangan bulat dalam matematika dilambangkan dengan Z (atau ), berasal dari Zahlen (bahasa Jerman untuk "bilangan"). Himpunan Z tertutup di bawah operasi penambahan dan perkalian. Artinya, jumlah dan hasil kali dua bilangan bulat juga bilangan bulat. Namun berbeda dengan bilangan asli, Z juga tertutup di bawah operasi pengurangan. Hasil pembagian dua bilangan bulat belum tentu bilangan bulat pula, karena itu Z tidak tertutup di bawah pembagian. (in)
  • En mathématiques, un entier relatif est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3… tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3… L'entier 0 lui-même est donc le seul nombre à la fois positif et négatif. Un nombre réel est entier s'il est sans partie fractionnaire, c'est-à-dire si son écriture décimale ne comprend pas de chiffre (autre que zéro) « après la virgule ». Les entiers relatifs permettent d'exprimer la différence de deux entiers naturels quelconques. Entre autres significations de la différence, on peut citer la position sur un axe orienté par rapport à un point de référence (un axe à positions discrètes, c'est-à-dire discontinues) ; le déplacement depuis une position d'origine, dans un sens ou dans l'autre ; ou encore la variation d'une valeur entière, donc comptée en unités (variation positive pour un gain, négative pour une perte). L'ensemble des entiers relatifs est noté « Z », lettre capitale grasse dans les textes dactylographiés, peu à peu supplantée par la graphie manuscrite avec une barre oblique ajourée : « ℤ ».La présence d'un astérisque en exposant (« Z* ») désigne en général l'ensemble des entiers relatifs non nuls, même si cette notation est utilisée parfois pour l'ensemble des éléments inversibles, c'est-à-dire la paire d'entiers {−1 ; 1}.La notation « Z− » désigne l'ensemble des entiers négatifs. Il est plus rare de trouver la notation « Z+ », remplacée par la notation « N » des entiers naturels par identification. Cet ensemble est (totalement) ordonné pour la relation de comparaison usuelle héritée des entiers naturels. Il est aussi muni des opérations d'addition et de multiplication qui fondent la notion d'anneau en algèbre. Les entiers relatifs sont aussi quelquefois appelés entiers rationnels, appellation qui ne doit pas entraîner de confusion avec les nombres rationnels ou fractions. Cette dénomination vient de l'anglais rational integer, et désigne un cas particulier d'entiers algébriques, construit sur le corps de nombres des rationnels. On trouve cette appellation chez Nicolas Bourbaki et certains mathématiciens s'inscrivant dans le mouvement des mathématiques modernes, parmi lesquels Georges Papy. (fr)
  • I numeri interi (o numeri interi relativi o, semplicemente, numeri relativi) corrispondono all'insieme ottenuto unendo i numeri naturali (0, 1, 2, ...) e i numeri interi negativi (−1, −2, −3,...), cioè quelli ottenuti ponendo un segno “−” davanti ai naturali. Questo insieme in matematica viene indicato con Z o , perché è la lettera iniziale di “Zahl” che in tedesco significa numero (originariamente "far di conto", infatti l'espressione implica l'utilizzo dei numeri negativi). Gli interi vengono quindi definiti esattamente come l'insieme dei numeri che sono il risultato tra sottrazioni di numeri naturali. I numeri interi possono essere sommati, sottratti e moltiplicati e il risultato rimane un numero intero. L'inverso di un numero intero non è però un intero in generale, ma un numero razionale; formalmente questo fatto si esprime dicendo che è un anello commutativo, ma non un campo. (it)
  • 수학에서, 정수(整數, 문화어: 옹근수, integer)는 양의 정수(1, 2, 3, 4, 5, 6, 7, 8, ... , n), 음의 정수(-1, -2, -3, -4, -5, -6, -7, -8...) 및 0으로 이루어진 수의 체계이다. 수론의 가장 기본적인 연구 대상이다. 정수 전체의 집합의 기호는 이다. (ko)
  • 数学における整数(せいすう、英: integer, whole number, 独: Ganze Zahl, 仏: nombre entier, 西: número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数の全体からなる集合は普通、太字の Z または黒板太字の で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある。 (ja)
  • Liczby całkowite – liczby naturalne dodatnie oraz liczby przeciwne do nich a także liczba zero. Są uogólnieniem zbioru liczb naturalnych na zbiór, w którym wykonalne jest odejmowanie. Uogólnieniem liczb całkowitych są liczby wymierne. Zbiór liczb całkowitych oznaczamy w matematyce symbolem (od niem. Zahlen – liczby). W Polsce w większości szkół podstawowych i średnich, w celu ułatwienia skojarzenia z polską nazwą, stosuje się symbol przy czym MEN zaleca używanie oznaczenia . (pl)
  • De gehele getallen zijn alle getallen in de rij …, −3, −2, −1, 0, 1, 2, 3, … die voortgezet wordt door er steeds 1 bij te tellen of er 1 af te trekken. De gehele getallen omvatten 0, de natuurlijke getallen, dus de getallen waarmee wordt geteld, en de tegengestelden daarvan, de negatieve gehele getallen. Een geheel getal heet 'geheel' omdat het niet gebroken is en zonder cijfers achter de komma kan worden geschreven. De getallen 21, 4 en −121 zijn bijvoorbeeld gehele getallen, terwijl 9,75, 5½ en geen gehele getallen zijn. De verzameling gehele getallen is een deelverzameling van de reële getallen, en wordt meestal voorgesteld door een vet gedrukte Z of het symbool (Unicode U+2124 ℤ), wat voor Zahlen, het Duits voor getallen, staat. De wiskundetak die zich met de studie bezighoudt naar de eigenschappen van de gehele getallen, noemt men de getaltheorie. (nl)
  • Um número inteiro é um número que pode ser escrito sem um componente fracional. Por exemplo, 21, 4, 0, e −2048 são números inteiros, enquanto 9.75, 51, e √2 não são. O conjunto dos números inteiros é representado pelo símbolo , cuja letra é originada da palavra alemã Zahlen ([ˈtsaːlən], "números"). Os inteiros (juntamente com a operação de adição) formam o menor grupo que contém o monoide aditivo dos números naturais. Como os números naturais, os inteiros formam um conjunto infinito contável. Os números inteiros podem ser simétricos, quando os números têm sinais opostos, ou pode existir também o valor absoluto de um número inteiro, que é a distância entre a origem e o número. (pt)
  • Целые числа — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение. Вещественное число является целым, если его десятичное представление не содержит дробной части (но может содержать знак). Примеры вещественных чисел: Числа 142857; 0; −273 являются целыми.Числа 5½; 9,75 не являются целыми. Множество целых чисел обозначается (от нем. Zahlen — «числа»). Изучением свойств целых чисел занимается раздел математики, называемый теорией чисел. (ru)
  • Heltalen är unionen av mängden naturliga tal {0, 1, 2, ...} och mängden negativa heltal {-1, -2, -3, ...}. Mängden av hela tal betecknas med den dubbelstrukna bokstaven ℤ (ibland fetstilta bokstaven Z), från det tyska ordet Zahlen (tal). Ibland definierar man delmängder av ℤ: ℤ+, ℤ* och ℤ–. * ℤ+ är 1, 2, 3, 4, 5 ... * ℤ* är 0, 1, 2, 3, 4, 5 ... * ℤ– är ... -5, -4, -3, -2, -1 Beroende på definition kan endera ℤ+ eller ℤ* vara detsamma som mängden naturliga tal. Mängden av hela tal är uppräkneligt oändlig och har kardinaltalet Alef-noll. Den är också en delmängd av mängden av rationella tal som i sin tur är en delmängd av mängden av reella tal som är en delmängd av mängden komplexa tal. När det gäller datorsystem används termen heltal (de hela talen) som distinktion till flyttal (de reella talen) eftersom de i datorer hanteras, beräknas och lagras olika. (sv)
  • 整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體或,源于德语单词Zahlen(意为“数”)的。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。 (zh)
  • Ці́лі чи́сла — в математиці елементи множини, яка утворюється замиканням натуральних чисел відносно віднімання. Таким чином, цілі числа замкнуті відносно додавання, віднімання та множення. Необхідність розгляду цілих чисел викликана неможливістю в загальному випадку відняти від одного натурального числа інше — можна віднімати тільки менше число від більшого. Введення нуля і від’ємних чисел робить віднімання такою ж повноцінною операцією, як додавання. Множина цілих чисел складається з * множини натуральних чисел , * нуля — розв'язку рівняння , * множини від'ємних чисел — множини розв'язків усіх рівнянь виду . Для позначення множини цілих чисел використовується символ ℤ, який може в різних авторів використовуватися для позначення групи множин: ℤ+, ℤ+ або ℤ> для позначення додатних цілих чисел, ℤ≥ для не від'ємних цілих чисел, ℤ≠ для всіх цілих чисел крім нуля. Деякі автори використовують позначення ℤ* для всіх цілих чисел крім нуля, інші для позначення не від'ємних цілих чисел, або для {–1, 1}. Дійсне число є цілим, якщо його десяткове подання не містить дробової частини (але може містити знак). Приклади дійсних чисел: Числа 142857; 0; -273 є цілими.Числа 5½; 9,75 не є цілими. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 14563 (xsd:integer)
dbo:wikiPageLength
  • 24165 (xsd:integer)
dbo:wikiPageRevisionID
  • 979901935 (xsd:integer)
dbo:wikiPageWikiLink
dbp:below
  • The Zahlen symbol, often used to denote the set of all integers (en)
dbp:id
  • 403 (xsd:integer)
  • p/i051290 (en)
dbp:style
  • width:20.0em (en)
dbp:title
  • Integer (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • العدد الصحيح (بالإنجليزية: Integer Number) هو عدد يُمكن كتابته بدون استخدام الكسور أو الفواصل العشرية، وتتكون مجموعة الأعداد الصحيحة والتي تعتبر مجموعة جزئية من مجموعة الأعداد الحقيقية- من الأعداد الطبيعة (1، 2، 3، ..) والصفر والأعداد السالبة المقابلة للأعداد الطبعيية (-1، -2، -3، ..)، وعليه فمجموعة الأعداد الصحيحة تكون مجموعة غير منتهية شأنها في ذلك شأن مجموعة الأعداد الطبيعية، وعادة ما يرمز لها بالحرف اللاتيني Z. (ar)
  • Celá čísla se skládají z přirozených čísel (1, 2, 3, …), nuly (0) a záporných celých čísel (-1, -2, -3, …). Množina celých čísel se v matematice většinou označuje Z, nebo , podle Zahlen (německy čísla). Podobně jako přirozená čísla, tvoří celá čísla nekonečnou spočetnou množinu. Studiem celých čísel se zabývá teorie čísel. (cs)
  • Ακέραιοι ονομάζονται όλοι οι φυσικοί αριθμοί μαζί με τους αντίθετούς τους και το μηδέν. Το σύνολο των ακεραίων δηλαδή το σύνολο: συμβολίζεται με το γράμμα , αρχικό της λέξης Zahl που στα γερμανικά σημαίνει αριθμός. Το σύνολο ορίζεται επίσης ως εξής: . Όπως και το σύνολο των φυσικών, το σύνολο των ακεραίων είναι άπειρο αριθμήσιμο με πληθάριθμο (άλεφ-μηδέν). (el)
  • Zenbaki osoen multzoan zenbaki arruntak biltzen dira (0,1,2,...), beren aurkakoekin batera (-0,-1,-2,...). -0 eta 0 berdintzat jotzen dira. Zenbaki osoen multzoa Z hizkiaz izendatu ohi da ('Zahlen' germanierazko hitzetik). Zenbaki osoak batu, kendu eta biderkatu egin daitezke: emaitza beti izango da zenbaki oso bat. x+a=b motako ekuazioen soluzioa, non a eta b zenbaki osoak diren, zenbaki osoa izango da. Zenbaki arrunten kasuan ez da esaterako gauza bera gertatzen. Zorrotzago, zenbaki osoen multzoak, batuketa eta biderketa eragiketak definitu ondoren, osatzen duela esan behar da. (eu)
  • Is iad na slánuimhir na uimhreacha aiceanta {0, 1, 2, 3, 4, ... } mar aon leis an dhiúl do na huimhreacha aiceanta dheimhneach { -1, -2, -3, -4, ...}. Is fo-thacar iad na slánuimhir {..., -2, -1, 0, 1, 2, ...} do na réaduimhir. Is tacar éigríochta iad na slánuimhir freisin. Úsáidtear an siombail chun an tacar iomlán do uimhreacha aiceanta a léiriú: Úsáidtear an focal Slánuimhir i ríomhchlárú freisin. Is cineál sonraí bunúsach é slánuimhir. Chuirtear é in iúil le 'int' i roinnt ríomhchlár, Java ina measc. San cás seo, ní tacar éigríochta atá i gceist san gcás seo. (ga)
  • 수학에서, 정수(整數, 문화어: 옹근수, integer)는 양의 정수(1, 2, 3, 4, 5, 6, 7, 8, ... , n), 음의 정수(-1, -2, -3, -4, -5, -6, -7, -8...) 및 0으로 이루어진 수의 체계이다. 수론의 가장 기본적인 연구 대상이다. 정수 전체의 집합의 기호는 이다. (ko)
  • 数学における整数(せいすう、英: integer, whole number, 独: Ganze Zahl, 仏: nombre entier, 西: número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数の全体からなる集合は普通、太字の Z または黒板太字の で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある。 (ja)
  • Liczby całkowite – liczby naturalne dodatnie oraz liczby przeciwne do nich a także liczba zero. Są uogólnieniem zbioru liczb naturalnych na zbiór, w którym wykonalne jest odejmowanie. Uogólnieniem liczb całkowitych są liczby wymierne. Zbiór liczb całkowitych oznaczamy w matematyce symbolem (od niem. Zahlen – liczby). W Polsce w większości szkół podstawowych i średnich, w celu ułatwienia skojarzenia z polską nazwą, stosuje się symbol przy czym MEN zaleca używanie oznaczenia . (pl)
  • 整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體或,源于德语单词Zahlen(意为“数”)的。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。 (zh)
  • Els nombres enters són els que designen quantitats no fraccionables en parts més petites que la unitat. Per exemple −3, 80, −4 o 2019 són enters, mentre que ; −1,5; 3,14; o no ho són. Els enters es poden qualificar també amb l'adjectiu "sencer": que no hi manca cap part. Aquesta no és, però, forma correcte d'anomenar-los. Són una extensió dels nombres naturals de forma que a més de comptar coses, permeten comptabilitzar pèrdues o deutes. També són necessaris en magnituds com les altures o la temperatura en què cal considerar valors per sobre o per sota de zero. (ca)
  • Die ganzen Zahlen (auch Ganzzahlen, lat. numeri integri) sind eine Erweiterung der natürlichen Zahlen. Die ganzen Zahlen umfassen alle Zahlen …, −3, −2, −1, 0, 1, 2, 3, … und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das „Z“ steht für das deutsche Wort „Zahlen“). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ℤ. (de)
  • An integer (from the Latin integer meaning "whole") is colloquially defined as a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5+1/2, and √2 are not. The set of integers consists of zero (0), the positive natural numbers (1, 2, 3, ...), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e., −1, −2, −3, ...). The set of integers is often denoted by a boldface letter ‘Z’ ("Z") or blackboard bold (Unicode U+2124 ℤ) standing for the German word Zahlen ([ˈtsaːlən], "numbers"). (en)
  • La entjeroj (aŭ plenaj nombroj) konsistas el la naturaj nombroj (1, 2, 3, …), la respondaj negativaj nombroj (−1, −2, −3, …) kaj 0 (nulo). Matematikistoj kutime signas la aron de la entjeroj per aŭ Z. La naturaj nombroj estas subaro de la entjeroj, kion oni signas per ⊂ . La entjero m estas nomata divizoro de la entjero n, se la kvociento de n per m ankaŭ estas entjero. Ekz-e 3 estas divizoro de 9, kaj 1, 2, 3, 4, 6, 12 estas ĉiuj pozitivaj divizoroj de 12. (eo)
  • Un número entero es un elemento del conjunto numérico que contiene los números naturales , sus opuestos y el cero.​ Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que cero y todos los enteros positivos. Para resaltar la diferencia entre positivos y negativos, se puede escribir un signo «más» delante de los positivos: +1, +5, etc. Y si no se escribe signo al número se asume que es positivo. El conjunto de todos los números enteros se representa por la letra letra inicial del vocablo alemán Zahlen («números», pronunciado [ˈtsaːlən]). (es)
  • En mathématiques, un entier relatif est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3… tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3… L'entier 0 lui-même est donc le seul nombre à la fois positif et négatif. Un nombre réel est entier s'il est sans partie fractionnaire, c'est-à-dire si son écriture décimale ne comprend pas de chiffre (autre que zéro) « après la virgule ». (fr)
  • Bilangan bulat terdiri dari bilangan cacah (0, 1, 2, 3, ...) dan negatifnya (-1, -2, -3, ...; -0 adalah sama dengan 0 sehingga tidak lagi dimasukkan secara terpisah). Bilangan bulat dapat dituliskan tanpa komponen desimal atau pecahan. Himpunan semua bilangan bulat dalam matematika dilambangkan dengan Z (atau ), berasal dari Zahlen (bahasa Jerman untuk "bilangan"). (in)
  • I numeri interi (o numeri interi relativi o, semplicemente, numeri relativi) corrispondono all'insieme ottenuto unendo i numeri naturali (0, 1, 2, ...) e i numeri interi negativi (−1, −2, −3,...), cioè quelli ottenuti ponendo un segno “−” davanti ai naturali. Questo insieme in matematica viene indicato con Z o , perché è la lettera iniziale di “Zahl” che in tedesco significa numero (originariamente "far di conto", infatti l'espressione implica l'utilizzo dei numeri negativi). (it)
  • De gehele getallen zijn alle getallen in de rij …, −3, −2, −1, 0, 1, 2, 3, … die voortgezet wordt door er steeds 1 bij te tellen of er 1 af te trekken. De gehele getallen omvatten 0, de natuurlijke getallen, dus de getallen waarmee wordt geteld, en de tegengestelden daarvan, de negatieve gehele getallen. De wiskundetak die zich met de studie bezighoudt naar de eigenschappen van de gehele getallen, noemt men de getaltheorie. (nl)
  • Um número inteiro é um número que pode ser escrito sem um componente fracional. Por exemplo, 21, 4, 0, e −2048 são números inteiros, enquanto 9.75, 51, e √2 não são. O conjunto dos números inteiros é representado pelo símbolo , cuja letra é originada da palavra alemã Zahlen ([ˈtsaːlən], "números"). Os inteiros (juntamente com a operação de adição) formam o menor grupo que contém o monoide aditivo dos números naturais. Como os números naturais, os inteiros formam um conjunto infinito contável. (pt)
  • Целые числа — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение. Вещественное число является целым, если его десятичное представление не содержит дробной части (но может содержать знак). Примеры вещественных чисел: (ru)
  • Ці́лі чи́сла — в математиці елементи множини, яка утворюється замиканням натуральних чисел відносно віднімання. Таким чином, цілі числа замкнуті відносно додавання, віднімання та множення. Необхідність розгляду цілих чисел викликана неможливістю в загальному випадку відняти від одного натурального числа інше — можна віднімати тільки менше число від більшого. Введення нуля і від’ємних чисел робить віднімання такою ж повноцінною операцією, як додавання. Множина цілих чисел складається з Числа 142857; 0; -273 є цілими.Числа 5½; 9,75 не є цілими. (uk)
  • Heltalen är unionen av mängden naturliga tal {0, 1, 2, ...} och mängden negativa heltal {-1, -2, -3, ...}. Mängden av hela tal betecknas med den dubbelstrukna bokstaven ℤ (ibland fetstilta bokstaven Z), från det tyska ordet Zahlen (tal). Ibland definierar man delmängder av ℤ: ℤ+, ℤ* och ℤ–. * ℤ+ är 1, 2, 3, 4, 5 ... * ℤ* är 0, 1, 2, 3, 4, 5 ... * ℤ– är ... -5, -4, -3, -2, -1 Beroende på definition kan endera ℤ+ eller ℤ* vara detsamma som mängden naturliga tal. (sv)
rdfs:label
  • عدد صحيح (ar)
  • Nombre enter (ca)
  • Celé číslo (cs)
  • Ganze Zahl (de)
  • Ακέραιος αριθμός (el)
  • Integer (en)
  • Entjero (eo)
  • Número entero (es)
  • Zenbaki oso (eu)
  • Entier relatif (fr)
  • Slánuimhir (ga)
  • Bilangan bulat (in)
  • Numero intero (it)
  • 整数 (ja)
  • 정수 (ko)
  • Geheel getal (nl)
  • Liczby całkowite (pl)
  • Número inteiro (pt)
  • Целое число (ru)
  • Heltal (sv)
  • Цілі числа (uk)
  • 整数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of