An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, and in particular singularity theory, an Ak singularity, where k ≥ 0 is an integer, describes a level of degeneracy of a function. The notation was introduced by V. I. Arnold. Let be a smooth function. We denote by the infinite-dimensional space of all such functions. Let denote the infinite-dimensional Lie group of diffeomorphisms and the infinite-dimensional Lie group of diffeomorphisms The product group acts on in the following way: let and be diffeomorphisms and any smooth function. We define the group action as follows: where and k ≥ 0 is an integer.

Property Value
dbo:abstract
  • In mathematics, and in particular singularity theory, an Ak singularity, where k ≥ 0 is an integer, describes a level of degeneracy of a function. The notation was introduced by V. I. Arnold. Let be a smooth function. We denote by the infinite-dimensional space of all such functions. Let denote the infinite-dimensional Lie group of diffeomorphisms and the infinite-dimensional Lie group of diffeomorphisms The product group acts on in the following way: let and be diffeomorphisms and any smooth function. We define the group action as follows: The orbit of f , denoted orb(f), of this group action is given by The members of a given orbit of this action have the following fact in common: we can find a diffeomorphic change of coordinate in and a diffeomorphic change of coordinate in such that one member of the orbit is carried to any other. A function f is said to have a type Ak-singularity if it lies in the orbit of where and k ≥ 0 is an integer. By a normal form we mean a particularly simple representative of any given orbit. The above expressions for f give normal forms for the type Ak-singularities. The type Ak-singularities are special because they are amongst the simple singularities, this means that there are only a finite number of other orbits in a sufficiently small neighbourhood of the orbit of f. This idea extends over the complex numbers where the normal forms are much simpler; for example: there is no need to distinguish εi = +1 from εi = −1. (en)
dbo:wikiPageID
  • 23802570 (xsd:integer)
dbo:wikiPageLength
  • 3002 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1114456142 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, and in particular singularity theory, an Ak singularity, where k ≥ 0 is an integer, describes a level of degeneracy of a function. The notation was introduced by V. I. Arnold. Let be a smooth function. We denote by the infinite-dimensional space of all such functions. Let denote the infinite-dimensional Lie group of diffeomorphisms and the infinite-dimensional Lie group of diffeomorphisms The product group acts on in the following way: let and be diffeomorphisms and any smooth function. We define the group action as follows: where and k ≥ 0 is an integer. (en)
rdfs:label
  • Ak singularity (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License