In mathematics, particularly in topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain a ball around each of their points (or, equivalently, a set is open if it doesn't contain any of its boundary points); however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets in the collection is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open (called the discrete topology),

Property Value
dbo:abstract
  • في الطوبولوجيا، تدعى المجموعة U بالمجموعة المفتوحة (بالإنكليزية: Open set) إذا كان، ابتداءً من أي نقطة x في المجموعة U من الممكن التحرك في أي اتجاه بشكل بسيط دون الخروج خارج المجموعة. بشكل آخر، إن المسافة بين أي نقطة x في المجموعة U ومحيط المجموعة U تكون دائماً أكبر من الصفر. وبصفة عامة في فضاء طوبولوجي (E,T) المجموعات المفتوحة أو المفتوحات اختصارا هي عناصر T. يشكل هذا المفهوم مفهوما هاما و أساسيا في الرياضيات. (ar)
  • Otevřená množina je matematická vlastnost množin, která je zobecněním otevřeného intervalu reálných čísel. Množina M topologického prostoru anebo metrického prostoru se nazývá otevřená, pokud s každým bodem x, který do ní patří, patří do této množiny i nějaké jeho okolí. Znamená to, že obsahuje s každým bodem i body, které jsou dostatečně blízko. (cs)
  • En matemàtiques, un conjunt obert (o simplement obert) és cadascun dels elements que conformen una topologia. Per exemple, a amb la topologia euclidiana, diem que és un conjunt obert, perquè per qualsevol valor tal que sempre podrem trobar un valor tal que la bola (obert de la topologia) . En el cas anterior, si s'hagués agafat el conjunt , no podríem dir el mateix, ja que per no existeix cap que compleixi la condició. El fet que un cert conjunt sigui obert o tancat no depèn dels elements de l'espai sinó també de la topologia que s'hi defineix. Així per exemple el cas anterior, en , no és un obert si prenem la topologia grollera. (ca)
  • Στα μαθηματικά, και πιο συγκεκριμένα στην τοπολογία, ένα ανοικτό σύνολο είναι μια αφηρημένη έννοια που γενικεύει την ιδέα ενός ανοικτού διαστήματος στην πραγματική γραμμή. Το απλούστερο παράδειγμα είναι στους μετρικούς χώρους όπου ανοικτά σύνολα μπορούν να οριστούν ως εκείνα τα σύνολα που περιέχουν μια σφαίρα γύρω από κάθε ένα από τα σημεία τους (ή, ισοδύναμα, ένα σετ είναι ανοιχτό αν δεν περιέχει κανένα από τα όρια του). Ωστόσο, ένα ανοιχτό σύνολο γενικά μπορεί να είναι πολύ αφηρημένο: κάθε συλλογή συνόλων μπορεί να ονομαστεί ανοιχτή, αρκεί να είναι ανοιχτή η ένωση ενός αυθαίρετου αριθμού ανοιχτών συνόλων, η τομή ενός πεπερασμένου αριθμού ανοιχτών συνόλων είναι ανοικτή, και ο ίδιος ο χώρος είναι ανοιχτός. Αυτές οι συνθήκες είναι πολύ χαλαρές και επιτρέπουν τεράστια ευελιξία στην επιλογή των ανοικτών συνόλων. Στις δύο ακραίες περιπτώσεις, κάθε σετ μπορεί να είναι ανοιχτό (που ονομάζεται διακριτή τοπολογία), ή κανένα σύνολο δεν μπορεί να είναι ανοιχτό εκτός από τον ίδιο τον χώρο και το κενό σύνολο (η αδιάκριτη τοπολογία). Στην πράξη, ωστόσο, τα ανοιχτά σύνολα επιλέγονται συνήθως να είναι παρόμοια με τα ανοιχτά διαστήματα της πραγματικής γραμμής. Η έννοια ενός ανοιχτού συνόλου παρέχει έναν θεμελιώδη τρόπο στο να μιλάμε για την εγγύτητα των σημείων σε ένα τοπολογικό χώρο, χωρίς να έχουμε ρητά οριστεί μια έννοια της απόστασης. Μόλις γίνει μια επιλογή ανοιχτών συνόλων, οι ιδιότητες της συνέχειας, της και της συμπάγειας, οι οποίες χρησιμοποιούν τις έννοιες της εγγύτητας, μπορούν να οριστούν χρησιμοποιώντας αυτά τα ανοικτά σύνολα. Κάθε επιλογή ανοιχτών συνόλων για έναν χώρο ονομάζεται τοπολογία. Παρόλο που τα ανοιχτά σύνολα και οι τοπολογίες που συνιστούν έχουν κεντρική σημασία στην γενική τοπολογία, χρησιμοποιούνται επίσης ως οργανωτικό εργαλείο σε άλλους σημαντικούς κλάδους των μαθηματικών. Παραδείγματα τοπολογιών περιλαμβάνουν την τοπολογία Zariski στην αλγεβρική γεωμετρία που αντικατοπτρίζει την αλγεβρική φύση των ποικιλιών και την τοπολογία σε μια στη διαφορική τοπολογία όπου κάθε σημείο εντός του χώρου περιέχεται σε ένα ανοιχτό σύνολο που είναι ομοιομορφικό με μια ανοιχτή μπάλα σε ένα πεπερασμένης διάστασης. (el)
  • In mathematics, particularly in topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain a ball around each of their points (or, equivalently, a set is open if it doesn't contain any of its boundary points); however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets in the collection is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open (called the discrete topology), or no set can be open but the space itself and the empty set (the indiscrete topology). In practice, however, open sets are usually chosen to be similar to the open intervals of the real line. The notion of an open set provides a fundamental way to speak of nearness of points in a topological space, without explicitly having a concept of distance defined. Once a choice of open sets is made, the properties of continuity, connectedness, and compactness, which use notions of nearness, can be defined using these open sets. Each choice of open sets for a space is called a topology. Although open sets and the topologies that they comprise are of central importance in point-set topology, they are also used as an organizational tool in other important branches of mathematics. Examples of topologies include the Zariski topology in algebraic geometry that reflects the algebraic nature of varieties, and the topology on a differential manifold in differential topology where each point within the space is contained in an open set that is homeomorphic to an open ball in a finite-dimensional Euclidean space. (en)
  • En topologio kaj rilatantaj kampoj de matematiko, aro U estas nomata kiel malfermita se, oni povas movi ĉiun punkton x el U per malfinie malgrando movo en ĉiu direkto kaj la punkto denove estos ene de U.En aliaj vortoj, se x estas ĉirkaŭbarita nur per eroj de U; ĝi ne povas esti sur rando de U. Kiel tipa ekzemplo, konsideru la malfermita intervalon ]0,1[ konsistantan el ĉiuj reelaj nombroj x : 0 < x < 1. Ĉi tie, la topologio estas kiel la kutima topologio sur la reela linio. Se oni movos ĉi tiun punkton x iom malmulte, tiam la movita versio estos ankoraŭ nombro inter 0 kaj 1, se la movo estas ne tro granda.Pro tio, la intervalo ]0,1[ estas malfermita.Tamen, la intervalo ]0,1] konsistanta de ĉiuj nombroj x kun 0 < x ≤ 1 estas ne malfermita; se oni prenas x = 1 kaj movas ĝin eĉ malmulte en la pozitiva direkto, ĝi estos ekster (0,1]. Ni notu ankaŭ ke malfermita ne estas la kontraŭo de fermita" (fermita aro estas la komplemento de malfermita aro). (eo)
  • Un conjunto abierto, en topología y otras ramas de las matemáticas, es un conjunto en el que cada uno de sus elementos tiene un entorno que está incluido en el mismo conjunto;​ o, dicho de una manera más intuitiva, que ningún elemento de dicho conjunto pertenece también a la frontera de este. En términos rigurosos se dice que en cualquier elemento del conjunto puede centrarse una bola abierta que está totalmente contenida en el conjunto.​ Se puede generalizar el concepto de ‘bola’ como los elementos que están muy cerca de otro en cualquier dirección, rodeándolo, pero para ello es necesario definir una función distancia que permita evaluar la lejanía o cercanía entre los objetos del conjunto, constituyendo así un espacio métrico —un conjunto más una definición de distancia en él—. Como ejemplo típico se puede evaluar el intervalo abierto (0, 1) en los números reales (), que se corresponde con todos los números entre 0 y 1 pero sin incluir estos, es decir, todos los números reales x con 0 < x < 1. Pues bien, intuitivamente se dice que es un conjunto abierto porque, para cualquier número x que pertenezca al conjunto, por mucho que pretendamos acercarnos a la frontera del conjunto —0 y 1—, siempre hay más elementos entre dicho número x y la frontera. Por ejemplo, si evaluamos el punto 0.9, entre este y el 1 está el 0,99, por ejemplo; al igual que entre 0,99 y 1 está el 0,999; y así sucesivamente. Siempre hay más números entre cualquier elemento del conjunto y la frontera, y es por tanto ‘abierto’. Sin embargo, en el conjunto cerrado [0, 1] entre el elemento 1 y la frontera del intervalo —que también es 1— no existen más elementos, por lo que se deduce que es en conjunto ‘cerrado’. O valorando la explicación más rigurosa, el espacio métrico en el caso del intervalo (0, 1), denotado como (, d), es el constituido por: * Los elementos que pertenecen a los números reales (), esto es, desde a . * La función distancia que, usando la distancia euclídea (d), se define como el valor absoluto de la resta . De esta manera en todo número x del conjunto (0, 1) puede centrarse una bola que está incluida dentro del conjunto; puesto que en la recta real una bola abierta centrada en un número x se corresponde con otro intervalo de la forma (x - ε, x + ε), donde epsilon es una cantidad muy pequeña, todo lo que se quiera. Así, una bola centrada en 0,9 estará dentro del conjunto, así como en 0,99 o en 0,999999, pues siempre habrá un epsilon de separación entre el punto y la frontera. Por el contrario en el conjunto cerrado [0, 1], una bola centrada en el elemento 1 quedará parcialmente fuera del conjunto. Observe que el que un conjunto dado U sea abierto depende del espacio circundante, el "cuarto de juegos". Por ejemplo, el conjunto de los números racionales entre 0 y 1 (exclusivo) es abierto en los números racionales, pero no es abierto en los números reales. Observe también que "abierto" no es el contrario de cerrado. Primero, existen conjuntos que son ambos abiertos y cerrados, llamados conjuntos clopen, como por ejemplo el conjunto de los números racionales más pequeños que √2 en los números racionales. Segundo, hay conjuntos que no son abiertos ni cerrados, como por ejemplo (0, 1] en R. (es)
  • In dem Teilgebiet Topologie der Mathematik ist eine offene Menge eine Menge mit einer genau definierten Eigenschaft (siehe unten). Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen Worten, wenn kein Element der Menge auf ihrem Rand liegt. Die Komplementärmenge einer offenen Menge nennt man abgeschlossene Menge. Diese Mengen sind dadurch charakterisiert, dass sie alle ihre Häufungspunkte enthalten. Ein einfaches Beispiel einer offenen Menge ist das Intervall in den reellen Zahlen. Jede reelle Zahl mit der Eigenschaft ist nur von Zahlen mit derselben Eigenschaft umgeben: Wähle als Umgebung die Menge , dann sind das die Zahlen zwischen 0 und 1. Deshalb nennt man das Intervall ein offenes Intervall. Dagegen ist das Intervall nicht offen, denn „rechts“ vom Element 1 (größer als 1) ist kein Element des Intervalls mehr. Ob eine Menge offen ist oder nicht, hängt von dem Raum ab, in dem sie liegt. Die rationalen Zahlen mit bilden eine offene Menge in den rationalen Zahlen, aber nicht in den reellen Zahlen, da jedes Intervall reeller Zahlen mit mehr als einem Element auch irrationale Zahlen enthält. Zu beachten ist, dass es sowohl Mengen gibt, die weder abgeschlossen noch offen sind, wie etwa das Intervall , als auch Mengen, die beides sind, wie die leere Menge. Solche Mengen, die gleichzeitig offen und abgeschlossen sind, werden als abgeschlossene offene Menge oder nach dem englischen Begriff als clopen set bezeichnet. Die Unterscheidung offener und abgeschlossener Mengen lässt sich auch mit Hilfe des Randes einer Menge treffen. Gehört dieser vollständig zur Menge dazu, so ist sie abgeschlossen. Gehört der Rand vollständig zum Komplement der Menge, so ist die Menge offen. Der Begriff der offenen Menge lässt sich auf verschiedenen Abstraktionsstufen definieren. Wir gehen hier vom anschaulichen euklidischen Raum über den metrischen Raum zum allgemeinsten Kontext, dem topologischen Raum. (de)
  • Matematikan, eta zehazkiago topologian, multzo irekia zuzen errealaren tarte irekiaren kontzeptua orokortzen duen idea abstraktua da. Adibiderik sinpleena hau da: espazio metrikoetan multzo irekiak beren puntu guztietan zentratutako bola bat parte duten multzo gisa definitu daitezke. Hala ere, multzo ireki bat, orokorrean, oso abstraktua izan daiteke: multzoz osaturiko edozein bilduma multzo irekien bilduma izango da baldin eta bilduma horretako multzoen edozein bildura eta ebakidura finituak bilduma horretan badaude; eta horrez gain, espazio osoa eta multzo hutsa bilduma horretan badaude. Baldintza hauek ez dira oso zehatzak eta multzo irekien aukeraketan malgutasun handia ematen dute. Bi muturretan, multzo guztiak irekiak izan daitezke (), edo posible da ф eta X ez den beste multzo irekirik ez egotea (). Multzo irekiaren ideiak espazio topologikoetako puntuen gertutasunaz hitz egitea ahalbidetzen du, distantzia kontzeptua zehazki definitua egon gabe. Behin multzo irekiak aukeratuta, jarraitutasuna, eta bezalako propietateak, zeintzuk gertutasunaren ideia erabiltzen/jasotzen duten, multzo ireki horien bitartez defini daitezke. Multzo irekien aukeraketa bakoitzari topologia deritzo. (eu)
  • En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. (fr)
  • Il concetto di insieme aperto si trova in matematica in molti ambiti e con diversi gradi di generalità. Intuitivamente, un insieme è aperto se è possibile spostarsi sufficientemente poco in ogni direzione a partire da ogni punto dell'insieme senza uscire dall'insieme stesso. In realtà, seguendo le definizioni generali ci si può allontanare abbastanza da questa idea intuitiva; attraverso la definizione di insieme aperto si possono definire concetti come "vicino", "lontano", "attaccato", "separato"; definizioni non intuitive di insiemi aperti corrisponderanno a situazioni matematiche in cui questi concetti vengono utilizzati in modo non intuitivo. (it)
  • 数学の位相空間論における開集合(かいしゅうごう、英: open set)は、実数直線における開区間の概念をする概念である。もっとも簡単な例は距離空間における場合で、そこでは開集合の概念は、各点を中心とする球体を含むような部分集合と一致する。しかし、一般には開集合は非常に抽象的なもので、「開集合の任意個の合併は開集合である」「開集合の有限個の交わりは開集合である」「全体空間は開集合である」という性質を満たす限りにおいて任意の集合族を開集合族とすることができる。空間に対する開集合族の選び方の各々は位相と呼ばれる(位相の特徴付けの項も参照せよ)。全ての集合には、任意の部分集合が開集合である離散位相と、空集合と全体集合のみを開集合とする密着位相という、二つの自明な位相が定義できる。 しかし実用上は、離散位相と密着位相の中間にある非自明な位相を考えることが多く、開集合の概念は位相空間における点の「近さ」について述べる方法を提供する基本的な道具立てである。開集合族がひとたび決められたならば、近さの概念を言い表すのに用いられる連続性・連結性およびコンパクト性が定義される。 開集合およびそれを含む位相の概念は点集合位相において中心的な重要性を持つものであるが、数学の他の主要分野における構造化の道具としても用いられる。そのような位相の例には、代数幾何学におけるザリスキー位相(代数多様体の代数的特性を反映する)や、微分位相幾何学における可微分多様体上の位相(空間内の各点が有限次元ユークリッド空間内の開球体に同相な近傍を持つ)などがある。 (ja)
  • 일반위상수학에서, 열린집합(-集合, 영어: open set) 또는 개집합(開集合)은 스스로의 경계를 전혀 포함하지 않는, 위상 공간의 부분 집합이다. 마찬가지로, 닫힌집합(-集合, 영어: closed set) 또는 폐집합(閉集合)은 스스로의 경계를 모두 포함하는, 위상 공간의 부분 집합이다. 열린집합은 닫힌집합의 여집합이며, 반대로 닫힌집합은 열린집합의 여집합이다. 이름과 달리, 열린집합과 닫힌집합의 개념은 서로 이 아니다. 즉, 주어진 부분 집합은 동시에 열린집합이자 닫힌집합일 수 있으며, 이러한 부분 집합을 열린닫힌집합(-集合, 영어: clopen set) 또는 개폐집합(開閉集合)이라고 한다. (ko)
  • In de metrische topologie en aanverwante gebieden van de wiskunde wordt een verzameling, , open genoemd, indien, intuïtief gesproken, vanaf elk punt in men een infinitesimaal kleine beweging in elke richting kan maken en in alle gevallen nog steeds deel uitmaakt van de verzameling . Met andere woorden, de afstand tussen elk punt in en de rand van is altijd groter dan nul. Men kan dit illustreren aan de hand van het plaatje hiernaast. Intuïtief is het rode gebied zonder rand een open verzameling: rond elk punt kan men een omgeving (gebiedje), construeren dat helemaal om heen ligt, maar toch in zijn geheel ook deel uitmaakt van . Een verzameling, waarvan het complement open is, heet gesloten. In ons voorbeeld is de blauwe cirkel een gesloten verzameling. Zie het artikel over topologische ruimten voor de precieze eigenschappen, waaraan de topologie (de collectie open verzamelingen van een topologische ruimte) moet voldoen. De bekendste voorbeelden van open verzamelingen zijn de open bollen in een metrische ruimte met metriek . Dit zijn verzamelingen van de vorm voor gegeven en een reëel getal groter dan 0. Beschouw als een verder voorbeeld, het open interval, , bestaande uit alle reële getallen met . De topologie is hier de topologie van de Euclidische ruimte op de reële getallenlijn. We kunnen dit op twee manieren bekijken. Aangezien elk punt in het interval verschilt van 0 en 1, is de afstand vanaf dat punt tot de rand altijd niet-nul. Of equivalent uitgedrukt, voor elk punt binnen het interval kunnen wij een infinitesimaal klein stukje in enige richting bewegen zonder de rand te raken, terwijl we nog steeds nog binnen het interval blijven. Het interval , bestaande uit alle getallen met , is niet open in de topologie van de reële getallenlijn; als men start in leidt zelfs een infinitesimale beweging in de positieve richting ertoe, dat men buiten het interval zit. (nl)
  • Zbiór otwarty – w danej przestrzeni topologicznej dowolny element rodziny Dopełnienie zbioru otwartego nazywane jest zbiorem domkniętym. Istnieją zbiory, które są jednocześnie i otwarte i domknięte (tzw. zbiory domknięto-otwarte), np. zbiór pusty i cała przestrzeń (pl)
  • Em topologia, um conjunto diz-se aberto se uma pequena variação de um ponto desse conjunto mantém-no no conjunto. (pt)
  • En öppen mängd är ett topologiskt begrepp inom matematik. Informellt är en öppen mängd en mängd som inte innehåller några punkter på sin rand, dvs. den kurva eller yta som begränsar mängden är inte själv en del av mängden. Man kan ofta, men inte alltid, intuitivt tänka sig en öppen mängd som att en mängd G är öppen om det för varje element i G finns ett litet klot centrerat på elementet som också är en delmängd till G. Den generella definitionen av en öppen mängd är helt enkelt att en öppen mängd är en mängd som tillhör topologin på rummet. En mängd vars komplement tillhör topologin kallas sluten. Öppna mängder är grundläggande i reell och komplex analys och ingår i den mer generella definitionen av kontinuerliga funktioner. De förekommer ofta i samband med metriska rum som i sig är topologiska rum. Topologin definieras där utifrån metriken, och därmed också vilka mängder som är öppna. (sv)
  • Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей — не является открытым. Термин «открытое множество» применяется к подмножествам топологических пространств и в этом случае никак не характеризует «само» множество (ни в смысле теории множеств, ни даже в смысле индуцированной на нём топологической структуры).Открытое множество является фундаментальным понятием общей топологии. (ru)
  • 開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式,或者规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间) (zh)
  • Відкри́та множина́ — в математичному аналізі, геометрії — це множина, кожна точка якої входить в неї разом з деяким околом. Відкрита множина є фундаментальним поняттям загальної топології. Відкрита множина це абстрактне поняття, яке узагальнює ідею відкритого проміжку на осі дійсних чисел. Найпростіший приклад відноситься до метричних просторів, де відкриту множину можна визначити як таку множину, яка містить шар довкола кожної точки, що належить множині (або, еквівалентно, множина буде відкритою, якщо вона не містить точок межі). (uk)
dbo:thumbnail
dbo:wikiPageID
  • 39358 (xsd:integer)
dbo:wikiPageLength
  • 15036 (xsd:integer)
dbo:wikiPageRevisionID
  • 974109812 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • 2925 (xsd:integer)
  • p/o068310 (en)
dbp:title
  • Open set (en)
  • Open Set (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • في الطوبولوجيا، تدعى المجموعة U بالمجموعة المفتوحة (بالإنكليزية: Open set) إذا كان، ابتداءً من أي نقطة x في المجموعة U من الممكن التحرك في أي اتجاه بشكل بسيط دون الخروج خارج المجموعة. بشكل آخر، إن المسافة بين أي نقطة x في المجموعة U ومحيط المجموعة U تكون دائماً أكبر من الصفر. وبصفة عامة في فضاء طوبولوجي (E,T) المجموعات المفتوحة أو المفتوحات اختصارا هي عناصر T. يشكل هذا المفهوم مفهوما هاما و أساسيا في الرياضيات. (ar)
  • Otevřená množina je matematická vlastnost množin, která je zobecněním otevřeného intervalu reálných čísel. Množina M topologického prostoru anebo metrického prostoru se nazývá otevřená, pokud s každým bodem x, který do ní patří, patří do této množiny i nějaké jeho okolí. Znamená to, že obsahuje s každým bodem i body, které jsou dostatečně blízko. (cs)
  • En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. (fr)
  • Il concetto di insieme aperto si trova in matematica in molti ambiti e con diversi gradi di generalità. Intuitivamente, un insieme è aperto se è possibile spostarsi sufficientemente poco in ogni direzione a partire da ogni punto dell'insieme senza uscire dall'insieme stesso. In realtà, seguendo le definizioni generali ci si può allontanare abbastanza da questa idea intuitiva; attraverso la definizione di insieme aperto si possono definire concetti come "vicino", "lontano", "attaccato", "separato"; definizioni non intuitive di insiemi aperti corrisponderanno a situazioni matematiche in cui questi concetti vengono utilizzati in modo non intuitivo. (it)
  • 일반위상수학에서, 열린집합(-集合, 영어: open set) 또는 개집합(開集合)은 스스로의 경계를 전혀 포함하지 않는, 위상 공간의 부분 집합이다. 마찬가지로, 닫힌집합(-集合, 영어: closed set) 또는 폐집합(閉集合)은 스스로의 경계를 모두 포함하는, 위상 공간의 부분 집합이다. 열린집합은 닫힌집합의 여집합이며, 반대로 닫힌집합은 열린집합의 여집합이다. 이름과 달리, 열린집합과 닫힌집합의 개념은 서로 이 아니다. 즉, 주어진 부분 집합은 동시에 열린집합이자 닫힌집합일 수 있으며, 이러한 부분 집합을 열린닫힌집합(-集合, 영어: clopen set) 또는 개폐집합(開閉集合)이라고 한다. (ko)
  • Zbiór otwarty – w danej przestrzeni topologicznej dowolny element rodziny Dopełnienie zbioru otwartego nazywane jest zbiorem domkniętym. Istnieją zbiory, które są jednocześnie i otwarte i domknięte (tzw. zbiory domknięto-otwarte), np. zbiór pusty i cała przestrzeń (pl)
  • Em topologia, um conjunto diz-se aberto se uma pequena variação de um ponto desse conjunto mantém-no no conjunto. (pt)
  • Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей — не является открытым. Термин «открытое множество» применяется к подмножествам топологических пространств и в этом случае никак не характеризует «само» множество (ни в смысле теории множеств, ни даже в смысле индуцированной на нём топологической структуры).Открытое множество является фундаментальным понятием общей топологии. (ru)
  • 開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式,或者规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间) (zh)
  • Відкри́та множина́ — в математичному аналізі, геометрії — це множина, кожна точка якої входить в неї разом з деяким околом. Відкрита множина є фундаментальним поняттям загальної топології. Відкрита множина це абстрактне поняття, яке узагальнює ідею відкритого проміжку на осі дійсних чисел. Найпростіший приклад відноситься до метричних просторів, де відкриту множину можна визначити як таку множину, яка містить шар довкола кожної точки, що належить множині (або, еквівалентно, множина буде відкритою, якщо вона не містить точок межі). (uk)
  • En matemàtiques, un conjunt obert (o simplement obert) és cadascun dels elements que conformen una topologia. Per exemple, a amb la topologia euclidiana, diem que és un conjunt obert, perquè per qualsevol valor tal que sempre podrem trobar un valor tal que la bola (obert de la topologia) . En el cas anterior, si s'hagués agafat el conjunt , no podríem dir el mateix, ja que per no existeix cap que compleixi la condició. (ca)
  • In dem Teilgebiet Topologie der Mathematik ist eine offene Menge eine Menge mit einer genau definierten Eigenschaft (siehe unten). Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen Worten, wenn kein Element der Menge auf ihrem Rand liegt. Die Komplementärmenge einer offenen Menge nennt man abgeschlossene Menge. Diese Mengen sind dadurch charakterisiert, dass sie alle ihre Häufungspunkte enthalten. (de)
  • Στα μαθηματικά, και πιο συγκεκριμένα στην τοπολογία, ένα ανοικτό σύνολο είναι μια αφηρημένη έννοια που γενικεύει την ιδέα ενός ανοικτού διαστήματος στην πραγματική γραμμή. Το απλούστερο παράδειγμα είναι στους μετρικούς χώρους όπου ανοικτά σύνολα μπορούν να οριστούν ως εκείνα τα σύνολα που περιέχουν μια σφαίρα γύρω από κάθε ένα από τα σημεία τους (ή, ισοδύναμα, ένα σετ είναι ανοιχτό αν δεν περιέχει κανένα από τα όρια του). Ωστόσο, ένα ανοιχτό σύνολο γενικά μπορεί να είναι πολύ αφηρημένο: κάθε συλλογή συνόλων μπορεί να ονομαστεί ανοιχτή, αρκεί να είναι ανοιχτή η ένωση ενός αυθαίρετου αριθμού ανοιχτών συνόλων, η τομή ενός πεπερασμένου αριθμού ανοιχτών συνόλων είναι ανοικτή, και ο ίδιος ο χώρος είναι ανοιχτός. Αυτές οι συνθήκες είναι πολύ χαλαρές και επιτρέπουν τεράστια ευελιξία στην επιλογή τ (el)
  • In mathematics, particularly in topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. The simplest example is in metric spaces, where open sets can be defined as those sets which contain a ball around each of their points (or, equivalently, a set is open if it doesn't contain any of its boundary points); however, an open set, in general, can be very abstract: any collection of sets can be called open, as long as the union of an arbitrary number of open sets in the collection is open, the intersection of a finite number of open sets is open, and the space itself is open. These conditions are very loose, and they allow enormous flexibility in the choice of open sets. In the two extremes, every set can be open (called the discrete topology), (en)
  • En topologio kaj rilatantaj kampoj de matematiko, aro U estas nomata kiel malfermita se, oni povas movi ĉiun punkton x el U per malfinie malgrando movo en ĉiu direkto kaj la punkto denove estos ene de U.En aliaj vortoj, se x estas ĉirkaŭbarita nur per eroj de U; ĝi ne povas esti sur rando de U. Ni notu ankaŭ ke malfermita ne estas la kontraŭo de fermita" (fermita aro estas la komplemento de malfermita aro). (eo)
  • Un conjunto abierto, en topología y otras ramas de las matemáticas, es un conjunto en el que cada uno de sus elementos tiene un entorno que está incluido en el mismo conjunto;​ o, dicho de una manera más intuitiva, que ningún elemento de dicho conjunto pertenece también a la frontera de este. En términos rigurosos se dice que en cualquier elemento del conjunto puede centrarse una bola abierta que está totalmente contenida en el conjunto.​ Se puede generalizar el concepto de ‘bola’ como los elementos que están muy cerca de otro en cualquier dirección, rodeándolo, pero para ello es necesario definir una función distancia que permita evaluar la lejanía o cercanía entre los objetos del conjunto, constituyendo así un espacio métrico —un conjunto más una definición de distancia en él—. (es)
  • Matematikan, eta zehazkiago topologian, multzo irekia zuzen errealaren tarte irekiaren kontzeptua orokortzen duen idea abstraktua da. Adibiderik sinpleena hau da: espazio metrikoetan multzo irekiak beren puntu guztietan zentratutako bola bat parte duten multzo gisa definitu daitezke. Hala ere, multzo ireki bat, orokorrean, oso abstraktua izan daiteke: multzoz osaturiko edozein bilduma multzo irekien bilduma izango da baldin eta bilduma horretako multzoen edozein bildura eta ebakidura finituak bilduma horretan badaude; eta horrez gain, espazio osoa eta multzo hutsa bilduma horretan badaude. (eu)
  • 数学の位相空間論における開集合(かいしゅうごう、英: open set)は、実数直線における開区間の概念をする概念である。もっとも簡単な例は距離空間における場合で、そこでは開集合の概念は、各点を中心とする球体を含むような部分集合と一致する。しかし、一般には開集合は非常に抽象的なもので、「開集合の任意個の合併は開集合である」「開集合の有限個の交わりは開集合である」「全体空間は開集合である」という性質を満たす限りにおいて任意の集合族を開集合族とすることができる。空間に対する開集合族の選び方の各々は位相と呼ばれる(位相の特徴付けの項も参照せよ)。全ての集合には、任意の部分集合が開集合である離散位相と、空集合と全体集合のみを開集合とする密着位相という、二つの自明な位相が定義できる。 しかし実用上は、離散位相と密着位相の中間にある非自明な位相を考えることが多く、開集合の概念は位相空間における点の「近さ」について述べる方法を提供する基本的な道具立てである。開集合族がひとたび決められたならば、近さの概念を言い表すのに用いられる連続性・連結性およびコンパクト性が定義される。 (ja)
  • In de metrische topologie en aanverwante gebieden van de wiskunde wordt een verzameling, , open genoemd, indien, intuïtief gesproken, vanaf elk punt in men een infinitesimaal kleine beweging in elke richting kan maken en in alle gevallen nog steeds deel uitmaakt van de verzameling . Met andere woorden, de afstand tussen elk punt in en de rand van is altijd groter dan nul. voor gegeven en een reëel getal groter dan 0. (nl)
  • En öppen mängd är ett topologiskt begrepp inom matematik. Informellt är en öppen mängd en mängd som inte innehåller några punkter på sin rand, dvs. den kurva eller yta som begränsar mängden är inte själv en del av mängden. Man kan ofta, men inte alltid, intuitivt tänka sig en öppen mängd som att en mängd G är öppen om det för varje element i G finns ett litet klot centrerat på elementet som också är en delmängd till G. (sv)
rdfs:label
  • مجموعة مفتوحة (ar)
  • Conjunt obert (ca)
  • Otevřená množina (cs)
  • Offene Menge (de)
  • Ανοικτό σύνολο (el)
  • Malfermita aro (eo)
  • Open set (en)
  • Conjunto abierto (es)
  • Multzo ireki (eu)
  • Ouvert (topologie) (fr)
  • Himpunan terbuka (in)
  • 開集合 (ja)
  • Insieme aperto (it)
  • 열린집합 (ko)
  • Open verzameling (nl)
  • Zbiór otwarty (pl)
  • Conjunto aberto (pt)
  • Открытое множество (ru)
  • Öppen mängd (sv)
  • Відкрита множина (uk)
  • 开集 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of