Theorem that a function f: S→Pow(S) on a compact nonempty convex subset S⊂ℝⁿ, whose graph is closed and whose image f(x) is nonempty and convex for all x∈S, has a fixed point
theorem that a function f: S→Pow(S) on a compact nonempty convex subset S⊂ℝⁿ, whose graph is closed and whose image f(x) is nonempty and convex for all x∈S, has a fixed point (en)
teoremo ke fikspunkton havas funkcio f: S→Pow(S) sur kompakta nemalplena konveksa subaro S⊂ℝⁿ, kies grafo estas fermita kaj kies bildo f(x) is estas nemalplena kaj konveksa por ĉiu x∈S (eo)