An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, two metrics on the same underlying set are said to be equivalent if the resulting metric spaces share certain properties. Equivalence is a weaker notion than isometry; equivalent metrics do not have to be literally the same. Instead, it is one of several ways of generalizing equivalence of norms to general metric spaces. Throughout the article, will denote a non-empty set and and will denote two metrics on .

Property Value
dbo:abstract
  • In mathematics, two metrics on the same underlying set are said to be equivalent if the resulting metric spaces share certain properties. Equivalence is a weaker notion than isometry; equivalent metrics do not have to be literally the same. Instead, it is one of several ways of generalizing equivalence of norms to general metric spaces. Throughout the article, will denote a non-empty set and and will denote two metrics on . (en)
  • Différentes notions d'équivalence de distances sont utilisées en topologie, une branche des mathématiques concernant l'étude des déformations spatiales par des transformations continues (sans arrachages ni recollement des structures). Étant donné un espace topologique métrisable (X, T), on peut trouver diverses distances qui définissent la même topologie T. Par exemple, la topologie usuelle de ℝ peut être définie par la distance d : (x, y) ↦ |x – y|, mais aussi par d / (1 + d), ou tout multiple de d par un réel strictement positif. Il faut donc préciser les « équivalences » entre de telles distances. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6811610 (xsd:integer)
dbo:wikiPageLength
  • 6400 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1110993972 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, two metrics on the same underlying set are said to be equivalent if the resulting metric spaces share certain properties. Equivalence is a weaker notion than isometry; equivalent metrics do not have to be literally the same. Instead, it is one of several ways of generalizing equivalence of norms to general metric spaces. Throughout the article, will denote a non-empty set and and will denote two metrics on . (en)
  • Différentes notions d'équivalence de distances sont utilisées en topologie, une branche des mathématiques concernant l'étude des déformations spatiales par des transformations continues (sans arrachages ni recollement des structures). (fr)
rdfs:label
  • Equivalence of metrics (en)
  • Équivalence de distances (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License