An Entity of Type: agent, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. A function is most often denoted by letters such as f, g and h, and the value of a function f at an element x of its domain is denoted by f(x). Functions are widely used in science, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics.

Property Value
dbo:abstract
  • في معظم مجالات الرياضيات، غالبًا ما يستعمل مصطلح تطبيق أو تحويل (بالإنجليزية: Map)‏ مرادفا لمصطلح دالة رياضية، ولكنها قد يشير أيضًا إلى بعض التعميمات. قد تكون التطبيقات إما دوال أو مشاكلات، على الرغم من أن المصطلحات تشترك في بعض التداخل. يمكن استخدام مصطلح «تطبيق» لتمييز بعض أنواع الدوال الخاصة ، مثل التشاكل. على سبيل المثال، التحويل الخطي هي تشاكل الفضاءات المتجهية، في حين أن مصطلح الدالة الخطية قد يكون له هذا المعنى بالإضافة إلى معنى آخر. في نظرية الأصناف، تحويل قد يشير إلى مشاكلة، وهو تعميم لفكرة الدالة. هناك أيضًا بعض الاستخدامات الأقل شيوعًا في المنطق ونظرية المخططات. (ar)
  • في الرياضيات، الدَالَّة (الجمع: دَوَالّ) أو التابع أو الاقتران (بالإنجليزية: Function)‏ هي كائن رياضي يمثل علاقة تربط كل عنصر من مجموعة تدعى المنطلق أو مجموعة الانطلاق أو المجال بعنصر واحد وواحد فقط على الأكثر من مجموعة تدعى المستقر أو المجال المقابل أو مجموعة الوصول . أو باستعمال الصياغة الرياضية الرسمية: ينتج عن هذا التعريف عدة أمور أساسية: * لكل تابع مجموعة منطلق (أو نطاق) غالبًا ما تدعى . * لكل تابع مجموعة مستقر (أو نطاق مرافق) غالبًا ما تدعى . * لا يمكن لعنصر من مجموعة المنطلق أن يرتبط إلا بعنصر وحيد من مجموعة المستقر . * يمكن لعنصر من مجموعة المستقر أن يرتبط بعنصر واحد أو أكثر من مجموعة المنطلق . فإذا كان المنطلق (النطاق) هو مجموعة القيم التي يمكن أن يأخذها متغير مستقل ، فإن المستقر أو (النطاق المرافق) هو مجموعة القيم الممكنة لقيم دالة . غالبًا ما نخصص لفظ دالة للتطبيقات التي يكون مستقرها (الدوال العددية)، أو (الدوال العقدية). في حين نسمي تطبيقًا كل ما يحقق التعريف أعلاه. الاقتران هو علاقة يرتبط بها كل عنصر من عناصر المجال بعنصر واحد فقط من عناصر المدى. (ar)
  • Funkce je v matematice název pro zobrazení z nějaké množiny do množiny čísel (většinou reálných nebo komplexních), nebo do vektorového prostoru (pak se mluví o vektorové funkci). Je to tedy předpis, který každému prvku z množiny (kde se nazývá definiční obor) jednoznačně přiřadí nějaké číslo nebo vektor (hodnotu funkce). Někdy se však slovo funkce používá pro libovolné zobrazení. (cs)
  • Zobrazení je v matematice předpis, kterým se prvkům určité množiny X přiřazuje nejvýše jeden prvek množiny Y. Přesněji mluvíme o zobrazení z množiny X do množiny Y. Pokud X=Y, mluvíme o zobrazení na množině. Ve speciálním případě, když je Y libovolná číselná množina, zobrazení nazýváme funkcí. Je-li prvku x množiny X přiřazen prvek y množiny Y, pak říkáme, že x je vzorem a y je obrazem. Matematicky je zobrazení speciálním případem binární relace, u které má každý vzor nejvýše jeden obraz. (cs)
  • In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, -Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, -Wert) zuordnet. Der Funktionsbegriff wird in der Literatur unterschiedlich definiert, jedoch geht man generell von der Vorstellung aus, dass Funktionen mathematischen Objekten mathematische Objekte zuordnen, zum Beispiel jeder reellen Zahl deren Quadrat. Das Konzept der Funktion oder Abbildung nimmt in der modernen Mathematik eine zentrale Stellung ein; es enthält als Spezialfälle unter anderem parametrische Kurven, Skalar- und Vektorfelder, Transformationen, Operationen, Operatoren und vieles mehr. (de)
  • Στα μαθηματικά, συνάρτηση, ή απεικόνιση είναι μια αντιστοίχιση μεταξύ δύο συνόλων, που καλούνται σύνολο ορισμού και σύνολο τιμών, κατά την οποία κάθε ένα στοιχείο του πεδίου ορισμού αντιστοιχίζεται σε ένα και μόνο στοιχείο του πεδίου τιμών. Αν είναι μια συνάρτηση από ένα σύνολο σε ένα σύνολο , γράφουμε . Ιστορικά η έννοια της συνάρτησης εισήχθη στα μαθηματικά από τον θεμελιωτή του διαφορικού και ολοκληρωτικού λογισμού Γερμανό μαθηματικό Γκότφριντ Βίλχελμ Λάιμπνιτς το 1694. Οι όροι συνάρτηση και απεικόνιση είναι συνώνυμοι. Ο πρώτος χρησιμοποιείται περισσότερο στην και τον απειροστικό λογισμό, ενώ ο δεύτερος στα διακριτά μαθηματικά. (el)
  • En matematiko, funkcio estas duvalenta rilato, kiu rilatigas al ĉiu membro de unu aro da matematikaj objektoj ununuran membron de la dua aro. Ĉi tio estas tre ĝenerala koncepto aperanta en ĉiuj areoj de matematiko kaj pretere. La funkcio estas uzata, interalie, kiel ilo por esprimi interdependecon (situacio, en kiu du variabloj estas interdependaj) kaj, kiel tia, permesas formalan prezenton de la naturo de interdependeco inter malsamaj grandoj en la kampoj de scienco, inĝenierado kaj ekonomiko. (eo)
  • Matematikan, funtzio edo aplikazioa bi multzoren elementuen arteko f erlazio bat da, X multzo bateko x elementu bakoitzari Y multzoko y elementu bakarra esleitzen diona. Adibidez, bizikleta batek egindako s ibilbidea (km) honela iragandako t denborarekin (ordutan) honela lotzen dela adieraz daiteke funtzio baten bitartez, abiadura 10km/h denean: s=10t, horrela t=1,2,3 balioak ordeztuz funtzioan 1, 2 eta 3 ordutara egindako bideak 10, 20 eta 30 km dira. Aurreko adibidean, funtzioa era analitikoan edo formulaz adierazi bada ere, funtzioa multzoen arteko edonolako erlazio batez irudika daiteke, ondoko irudian azaldu bezala, betiere x balio bakoitzari y balio bakarra badagokio. Funtzioaren kontzeptua funtsezkoa da matematikan, eta horri esker zientzian eta teknologian funtsezkoa den aldaketa kontzeptua garatu ahal izan da, deribatuen eta integral bitartez, besteak beste. Formalki honela definitzen da f funtzio bat: . X multzoari izate-eremu, abiaburu-multzo edo dominio deritzo, eta Y multzoari kodominioa. Y kodominioan X multzoko balioek hartzen duten balioen multzoa irudi-multzo edo helburu-multzoa da. x elementu bakoitzari argumentu deritzo, eta dagokion y balioari irudi edo balio. (eu)
  • In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept. A function is most often denoted by letters such as f, g and h, and the value of a function f at an element x of its domain is denoted by f(x). A function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function. When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane. The set of these points is called the graph of the function; it is a popular means of illustrating the function. Functions are widely used in science, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics. (en)
  • En matemática, se dice que una magnitud es función de otra si el valor de la primera depende del valor de la segunda. Por ejemplo, el área A de un círculo es función de su radio r (el valor del área es proporcional al cuadrado del radio, A = π·r2). Del mismo modo, la duración T de un viaje en tren entre dos ciudades separadas por una distancia (d) de 150 km depende de la velocidad (v) a la que se desplace el tren (la duración es inversamente proporcional a la velocidad, (T / v). A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la magnitud de la que depende (el radio y la velocidad) es la variable independiente. En análisis matemático, el concepto general de función, se refiere a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto. Las funciones son relaciones entre los elementos de dos conjuntos. Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):​ Esta asignación constituye una función entre el conjunto de los números enteros Z y el conjunto de los números naturales N. Aunque las funciones que manipulan números son las más conocidas, no son el único ejemplo: puede imaginarse una función que a cada palabra del español le asigne su letra inicial: Esta es una función entre el conjunto de las palabras del español y el conjunto de las letras del alfabeto español. La manera habitual de denotar una función f es: f: A → B a → f(a), donde A es el dominio de la función f; su primer conjunto, o conjunto de partida, y B es el codominio de f; su segundo conjunto, o conjunto de llegada. Por f(a) se denota la regla o algoritmo para obtener la imagen de un cierto objeto arbitrario a del dominio A, es decir, el (único) objeto de B que le corresponde. En ocasiones esta expresión es suficiente para especificar la función por completo, infiriendo el dominio y codominio por el contexto. En el ejemplo anterior, las funciones «cuadrado» e «inicial», llámeseles y , se denotarían entonces como: , o sencillamente ;g: V → A p → Inicial de p; si se conviene V = {Palabras del español} y A = {Alfabeto español}. Una función puede representarse de diversas formas: mediante el citado algoritmo o ecuaciones para obtener la imagen de cada elemento, mediante una tabla de valores que empareje cada valor de la variable independiente con su imagen —como las mostradas arriba—, o como una gráfica que dé una imagen de la función. (es)
  • En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique. Dans l’enseignement scolaire, le terme « fonction » concerne spécifiquement les fonctions réelles d’une variable réelle. De nombreuses fonctions dites usuelles sont ainsi définies comme les fonctions affines, la racine carrée ou l’exponentielle, et peuvent être combinées à l’aide des opérations arithmétiques, de la composition ou de la définition par morceaux. Ces fonctions satisfont diverses propriétés portant sur la régularité, les variations, l’intégrabilité... En théorie des ensembles, une fonction ou application est une relation entre deux ensembles pour laquelle chaque élément du premier est en relation avec un unique élément du second. Parfois, on distingue la notion de fonction en affaiblissant la condition comme suit : chaque élément du premier ensemble est en relation avec au plus un élément du second. En théorie des types, une fonction est la description de la méthode pour obtenir le résultat à partir de ses paramètres. Autrement dit une fonction est l'algorithme qui permet de la calculer. Le terme de fonction s'utilise parfois pour des extensions de la notion comme les classes de fonctions p-intégrables ou les distributions telle la fonction de Dirac. Articles détaillés : Liste de fonctions numériques et Lexique de propriétés de fonctions. (fr)
  • En mathématiques, une application est une relation entre deux ensembles pour laquelle chaque élément du premier (appelé ensemble de départ ou source) est relié à un unique élément du second (l’ensemble d'arrivée ou but). Le terme est concurrencé par celui de fonction, bien que celui-ci désigne parfois plus spécifiquement les applications dont le but est un ensemble de nombres et parfois, au contraire, englobe plus largement les relations pour lesquelles chaque élément de l'ensemble de départ est relié à au plus un élément de l'ensemble d'arrivée. Une application peut avoir des valeurs non numériques, comme celle qui associe à chaque élève d’une classe son jour de naissance, ou l’application qui à chaque carte d’un jeu de 32 cartes associe sa couleur. Une application est donc un objet issu de la théorie des ensembles, défini par son graphe et associé aux notions d'image et d'antécédent. Elle peut être injective ou surjective selon l'unicité ou l'existence d'un antécédent pour chaque élément de l'ensemble d'arrivée. Une application possédant ces deux propriétés est une bijection, qui admet alors une application réciproque. Les applications peuvent aussi être composées ou restreintes à un sous-ensemble de leur ensemble de départ. En dehors du contexte de l'analyse, le terme est spécifié entre autres en géométrie affine, en algèbre linéaire, en topologie et dans la théorie des systèmes dynamiques. Il est parfois remplacé par celui d'opérateur ou de morphisme, voire de flèche, notamment en théorie des catégories. (fr)
  • Sa mhatamaitic, comhthiomsaíonn feidhm cainníocht amháin, argóint na feidhme, ar a dtugtar an t-ionchur, le cainníocht eile, luach na feidhme, ar a dtugtar freisin an t-aschur. Sannann feidhm aschur díreach ar cheann amháin do gach ionchur. Deirtear f(x) nó "F de X." D'fhéadfadh an argóint agus an luach bheith ina réaduimhreacha, ach is féidir leo freisin bheith ina n-eilimintí ó aon ar leith. Is sampla simplí d'fheidhm é f(x) = 2x, áit a seasann an x d'aon réaduimhir. Comhthiomsán gach réaduimhir le réaduimhir dhá uair chomh mór leis. Mar sin, mar shampla, tá 5 comhthiomsaithe le 10, scríofa f(5) = 10. Tabhair faoi deara i gcomhair na feidhme seo gur tacar de réaduimhreacha é an fearann, agus is sraith de réaduimhreacha é an raon chomh maith; níl an dá thacar comhionann. (ga)
  • Fungsi dalam istilah matematika merupakan pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain atau variabel bebas) kepada anggota himpunan yang lain (dinamakan sebagai kodomain atau variabel terikat) yang dapat dinyatakan dengan lambang , atau dapat menggunakan lambang , . Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah "fungsi", "pemetaan", "peta", "transformasi", dan "operator" biasanya dipakai secara sinonim. Anggota himpunan yang dipetakan dapat berupa apa saja (kata, orang, atau objek lain), namun biasanya yang dibahas adalah besaran matematika seperti bilangan riil. Contohnya adalah sebuah fungsi dengan domain dan kodomain himpunan bilangan riil adalah , yang menghubungkan suatu bilangan riil dengan bilangan riil lain yang dua kali lebih besar. Dalam hal ini kita dapat menulis . (in)
  • Il termine mappa in matematica è spesso usato come sinonimo di funzione. Quindi, per esempio, una mappa parziale è una funzione parziale e una mappa totale è una funzione totale. Termini correlati come dominio, codominio, funzione iniettiva, funzione continua, possono essere applicati sia a mappe che a funzioni con lo stesso significato. In molti rami della matematica il termine mappa acquisisce un significato specifico come per esempio in topologia significa funzione continua, in algebra lineare significa trasformazione lineare, nella teoria delle categorie il termine è spesso usato come sinonimo di morfismo o freccia. Alcuni autori come Serge Lang usano mappa come termine generico riferito all'associazione di un elemento dell'immagine con ogni elemento del dominio, mentre usano funzione solo per riferirsi a mappe nelle quali l'immagine è un campo. Insiemi di mappe con proprietà speciali sono importanti in varie teorie come per esempio nel gruppo di permutazione e nel gruppo di Lie. Nella logica formale viene talvolta usato con il significato di predicato funzionale, laddove una funzione è un modello tipo un della teoria degli insiemi. Nella teoria dei grafi una mappa è il disegno su una superficie di un grafo senza lati che si intersecano (un grafo planare). Nella teoria dei sistemi dinamici una mappa è una funzione di evoluzione usata per creare sistemi dinamici discreti. (it)
  • 数学における関数(かんすう、英: function、仏: fonction、独: Funktion、 蘭: functie、羅: functio、函数とも書かれる)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式のことであった。この言葉はライプニッツによって導入された。その後定義が一般化され、現代では数の集合に値をとる写像の一種であると理解されるものとなった。 (ja)
  • In matematica, una funzione è una relazione tra due insiemi, chiamati dominio e codominio della funzione, che associa a ogni elemento del dominio uno e un solo elemento del codominio. Se il dominio e il codominio della funzione sono rispettivamente indicati con e , la relazione si indica con e l’elemento che associa a si indica con (si pronuncia "effe di x"). (it)
  • 写像(しゃぞう、英: Mapping, Map)は、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。関数、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「関数」は論理的におなじ概念を表すものと理解されているが、歴史的には「関数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも関数の名の下におなじ範疇に扱われる(多価関数参照)。文献によっては「数の集合(大抵の場合実数体 R または複素数体 C の部分集合)を終域に持つ写像」をして特に「関数」と呼び、「写像」はより一般の場合に用いる。関数、二項関係、対応の各項も参照のこと。 (ja)
  • In de wiskunde is het begrip afbeelding de verzamelingtheoretische interpretatie van het begrip functie. Omdat afbeeldingen gedefinieerd kunnen worden voor willekeurige verzamelingen, kan het begrip afbeelding ook gezien worden als een generalisatie van het begrip functie, dat gewoonlijk zo gedefinieerd is dat een functie altijd getallen als resultaat heeft. Informeel gesproken is een afbeelding een voorschrift dat aan ieder element van een verzameling een element uit een (andere) verzameling toevoegt. Zo'n toevoeging laat zien hoe sommige elementen uit een verzameling afhankelijk zijn van de elementen uit een andere (of dezelfde) verzameling. Omdat de wiskunde onder andere zulke afhankelijkheden onderzoekt, is een afbeelding een belangrijk basisbegrip. (nl)
  • In de wiskunde drukt een functie een afhankelijkheid uit van één element van een ander. Meestal wordt het begrip gebruikt in de traditionele context waarin deze elementen getallen zijn. Een functie is dan een afbeelding van getallen, die voorschrijft wat de functiewaarde is van het argument . De functie met functiewaarde bijvoorbeeld, bepaalt van elk reëel getal als functiewaarde het dubbele van dit getal. Het wiskundige begrip 'functie' heeft in het Nederlandse taalgebied de betekenis, dat het een relatie is die voor ieder 'origineel' maximaal één 'beeld' heeft. Er is het verschil tussen een volledige en een partiële functie, waarbij in een volledige functie aan ieder origineel in het domein een beeld wordt verbonden, terwijl dit in een partiële functie dit niet noodzakelijk het geval is. Er is ook, zoals in andere taalgebieden, de opvatting dat een functie als synoniem is te beschouwen aan een afbeelding, dus een relatie waarin ieder 'origineel' precies één 'beeld' heeft. In dit artikel wordt deze definitie gevolgd. Behalve elementaire functies op getallen kan een functie ook een afbeelding zijn tussen andere wiskundige structuren zoals groepen, of tussen meetkundige objecten, zoals variëteiten. In de abstracte benadering volgens de verzamelingenleer is een functie een tweeplaatsige relatie tussen twee verzamelingen, het domein en het codomein, die elk element in het domein associeert met precies één element in het codomein. Een voorbeeld van een functie met domein en codomein associeert met , met en met . Ook de relatie die met , met en ook met associeert, is een functie (nl)
  • Uma função é uma relação de um conjunto com um conjunto Usualmente, denotamos uma tal função por onde é o nome da função, é chamado de domínio, é chamado de imagem e expressa a lei de correspondência (relação) dos elementos com os elementos Conforme suas características, as funções são agrupadas em várias categorias, entre as principais temos: função trigonométrica, função afim (ou função polinomial do 1° grau), função modular, função quadrática (ou função polinomial do 2° grau), função exponencial, função logarítmica, função polinomial, dentre inúmeras outras. (pt)
  • Mapa é um termo que pertence ao jargão matemático coloquial, e que pode referir-se a uma função ou a uma relação matemática, quando se trata de domínios e/ou contradomínios não necessariamente numéricos. Outros sinônimos são aplicação matemática e transformação. Mapa provem da palavra inglesa map, e também se utiliza no jargão matemático como verbo (mapear), assim como o termo mapeamento. (pt)
  • Funkcja (łac. functio, -onis „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów i przyporządkowanie każdemu elementowi zbioru dokładnie jednego elementu zbioru . Oznacza się ją na ogół itd. Jeśli funkcja przyporządkowuje elementom zbioru elementy zbioru to zapisujemy to następująco: Zbiór nazywa się dziedziną, a zbiór – przeciwdziedziną funkcji Zbiór wszystkich funkcji ze zbioru do zbioru oznacza się często .Ponadto: * dziedzinę czasami nazywa się zbiorem argumentów funkcji f, * przeciwdziedzinę nazywa się czasem zbiorem wartości funkcji, chociaż właściwszym stwierdzeniem jest: przeciwdziedzina zawiera w sobie zbiór wartości funkcji, * każdy element zbioru nazywa się argumentem funkcji, * każdy element nazywa się wartością funkcji, * mówi się także, że jest przekształceniem lub odwzorowaniem zbioru w zbiór , * zbiór jest obrazem podzbioru zbioru w przekształceniu , * dla każdego elementu przeciwobrazem elementu (dokładniej pełnym przeciwobrazem) nazywamy zbiór jeśli to . * przeciwobrazem podzbioru nazywamy zbiór jeżeli to (pl)
  • Фу́нкция в математике — соответствие между элементами двух множеств — правило, по которому каждому элементу первого соответствует один и только один элемент второго множества. Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так, значение переменной однозначно определяет значение выражения ,также значение месяца однозначно определяет значение следующего за ним месяца.«Житейский» пример функции: каждому человеку можно однозначно поставить в соответствие его биологического отца. Аналогично, заранее заданный алгоритм по значению входного данного выдаёт значение выходного данного. Часто под термином «функция» понимается числовая функция, то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представлять в виде графиков. (ru)
  • Inom matematik är en avbildning, T, från en mängd X till en mängd Y, en hopparning av vissa element från X med vissa element från Y. Denna parning är sådan att ett X-element paras ihop med bara ett Y-element; X-elementet x paras ihop med Y-elementet Tx. * De X-element som ingår i parningen utgör vad som kallas avbildningens definitionsmängd D(T). I allmänhet är detta en delmängd av mängden X: * De Y-element som ingår i parningen utgör vad som kallas avbildningens värdemängd R(T). I allmänhet är detta en delmängd av mängden Y: * Om definitionsmängden utgör hela mängden X säger man att avbildningen är injektiv: * Om värdemängden utgör hela Y-mängden säger man att avbildningen är surjektiv: * En avbildning som är både injektiv och surjektiv kallar man en bijektiv avbildning. En operator är en avbildning där mängden X är ett vektorrum och där mängden Y också är ett vektorrum. En funktional är en avbildning där mängden X är ett vektorrum och mängden Y är en delmängd av de komplexa talen. Ofta används begreppet funktion synonymt med avbildning, men ibland görs åtskillnad mellan dessa begrepp. I dessa fall menas med en funktion en avbildning där mängden X kan vara vad som helst, men där mängden Y är en delmängd av de komplexa talen. Mängden av de komplexa talen är ett vektorrum, så en funktional är en särskild slags operator och även en särskild slags funktion. (sv)
  • En funktion är en regel som till varje invärde kopplar utvärden. Ofta beskrivs sambandet mellan invärde och utvärde med en matematisk formel, där invärdet representeras med en eller flera variabler, alternativt med en tabell eller grafiskt med en graf, ett sambandsdiagram eller ett pildiagram. En viktig egenskap hos funktioner är att de är deterministiska (det vill säga konsekventa, så att varje invärde alltid ger samma utvärde). Detta gör att funktionen kan ses som en maskin, som systematiskt levererar utvärden så fort man stoppar in invärden. Invärdet x till funktionen f kallas inom matematisk analys ofta ’’invariabel’’ och inom beräkningsvetenskap för ’’funktionsargument’’ eller ’’argument’’. Det resulterande utvärdet f(x) kallas ’’funktionsvärdet’’ eller ’’värdet’’. En funktion som är vanligt förekommande som byggsten i matematiska formler kallas elementär funktion, och har ett specifikt namn såsom sinusfunktion, kvadratrot eller logaritm. En funktionsräknare (en vetenskaplig kalkylator) är en miniräknare som kan beräkna värdet av elementära funktioner. En grafritande miniräknare kan visa grafer för funktionsuttryck. (sv)
  • Фу́нкція (відображення, перетворення, оператор, залежник) в математиці — це правило, яке кожному елементу з першої множини — області визначення ставить у відповідність елемент з іншої множини — області значень. Часто цю другу множину називають цільовою множиною чи образом функції чи відображення. Відображення , яке ставить у відповідність кожному елементові множини єдиний елемент множини позначається тобто відображає в . (uk)
  • 函数(英語:Function)在数学中为两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应​​唯一一项输出值集合中的元素。例如实数对应到其平方的关系就是一个函数,若以作为此函数的输入值,所得的输出值便是。 为方便起见,一般做法是以符号等等来指代一个函数。若函数以作为输入值,则其输出值一般写作,读作'f of x' 。上述的平方函数关系写成数学式记为。函数的概念并不局限于数之间的映射关系,例如若定义函数为每个国家当前的首都,那么给予输入值英国就会输出唯一值伦敦:。 气温的分布也能用函数表达,以时间和地点作为参量输入,以该时该地的温度作为输出。表达函数有多种方式,例如解析法是用数学式表达两个变量之间的对应关系,图像法是用坐标系上的函數圖形表达两个变量之间的对应关系,列表法用表格表达两个变量之间的对应关系。 現代數學中,函数所有输入值的集合被称作該函数的定义域,而其輸出值所存在的集合稱為對應域。其中值域特指該函數的输出值集合,意即上域包含了值域,值域為上域的子集。通常輸入值稱作函數的參數或參量,輸出值稱作函數的值。函數將有效的輸入值變換為唯一的輸出值,同一輸入總是對應同一輸出,但反之未必成立。因此如這樣的表達式並沒有定義出一个函数,因为输出值有兩個可能。定義函數時需確定每一个输入值只对应唯一输出值,因此必须明确地选择一个平方根。例如定义,亦即对于任何非负输入值,选择其非负平方根作为函数值。 函數可以看作機器或黑箱,通常最常見的函數的參數和函數值都是數字,其對應關係用函數式表示,函數值可以通過直接將參數值代入函數式得到。,的平方即是函數值。也可以將函數很簡單的推廣到與多個參量相關的情況。例如有兩個參量和,以乘積為值。將這兩個輸入看作一個有序對。即為以這個有序對作參數的函數,而函數值是。函數能被抽象定義為某種數學關係,由於其定義的一般性,在幾乎所有的數學分支都是基礎概念。一些領域中比如在λ演算中,函数可以是作為一個原始概念而不像在集合論般有所定义。在大部分的数学领域内,术语对应、映射、通常是函数的近义词。不過某些情況這些術語可能有別的特定意思,例如在拓扑學中一个映射有时被定义成一个连续函数。 (zh)
  • 映射(英語:Map),或称射影、写像(Mapping),在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 185427 (xsd:integer)
dbo:wikiPageLength
  • 74993 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1072191558 (xsd:integer)
dbo:wikiPageWikiLink
dbp:align
  • right (en)
dbp:caption
  • ---- (en)
  • Diagram of a function, with domain and codomain , which is defined by the set of ordered pairs . The image/range is the set . (en)
  • This diagram, representing the set of pairs , does not define a function. One reason is that 2 is the first element in more than one ordered pair, and , of this set. Two other reasons, also sufficient by themselves, is that neither 3 nor 4 are first elements of any ordered pair therein. (en)
dbp:direction
  • vertical (en)
dbp:id
  • p/f041940 (en)
dbp:image
  • Injection keine Injektion 1.svg (en)
  • Injection keine Injektion 2a.svg (en)
dbp:title
  • Function (en)
dbp:width
  • 220 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • في معظم مجالات الرياضيات، غالبًا ما يستعمل مصطلح تطبيق أو تحويل (بالإنجليزية: Map)‏ مرادفا لمصطلح دالة رياضية، ولكنها قد يشير أيضًا إلى بعض التعميمات. قد تكون التطبيقات إما دوال أو مشاكلات، على الرغم من أن المصطلحات تشترك في بعض التداخل. يمكن استخدام مصطلح «تطبيق» لتمييز بعض أنواع الدوال الخاصة ، مثل التشاكل. على سبيل المثال، التحويل الخطي هي تشاكل الفضاءات المتجهية، في حين أن مصطلح الدالة الخطية قد يكون له هذا المعنى بالإضافة إلى معنى آخر. في نظرية الأصناف، تحويل قد يشير إلى مشاكلة، وهو تعميم لفكرة الدالة. هناك أيضًا بعض الاستخدامات الأقل شيوعًا في المنطق ونظرية المخططات. (ar)
  • Funkce je v matematice název pro zobrazení z nějaké množiny do množiny čísel (většinou reálných nebo komplexních), nebo do vektorového prostoru (pak se mluví o vektorové funkci). Je to tedy předpis, který každému prvku z množiny (kde se nazývá definiční obor) jednoznačně přiřadí nějaké číslo nebo vektor (hodnotu funkce). Někdy se však slovo funkce používá pro libovolné zobrazení. (cs)
  • Zobrazení je v matematice předpis, kterým se prvkům určité množiny X přiřazuje nejvýše jeden prvek množiny Y. Přesněji mluvíme o zobrazení z množiny X do množiny Y. Pokud X=Y, mluvíme o zobrazení na množině. Ve speciálním případě, když je Y libovolná číselná množina, zobrazení nazýváme funkcí. Je-li prvku x množiny X přiřazen prvek y množiny Y, pak říkáme, že x je vzorem a y je obrazem. Matematicky je zobrazení speciálním případem binární relace, u které má každý vzor nejvýše jeden obraz. (cs)
  • In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, -Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, -Wert) zuordnet. Der Funktionsbegriff wird in der Literatur unterschiedlich definiert, jedoch geht man generell von der Vorstellung aus, dass Funktionen mathematischen Objekten mathematische Objekte zuordnen, zum Beispiel jeder reellen Zahl deren Quadrat. Das Konzept der Funktion oder Abbildung nimmt in der modernen Mathematik eine zentrale Stellung ein; es enthält als Spezialfälle unter anderem parametrische Kurven, Skalar- und Vektorfelder, Transformationen, Operationen, Operatoren und vieles mehr. (de)
  • En matematiko, funkcio estas duvalenta rilato, kiu rilatigas al ĉiu membro de unu aro da matematikaj objektoj ununuran membron de la dua aro. Ĉi tio estas tre ĝenerala koncepto aperanta en ĉiuj areoj de matematiko kaj pretere. La funkcio estas uzata, interalie, kiel ilo por esprimi interdependecon (situacio, en kiu du variabloj estas interdependaj) kaj, kiel tia, permesas formalan prezenton de la naturo de interdependeco inter malsamaj grandoj en la kampoj de scienco, inĝenierado kaj ekonomiko. (eo)
  • Sa mhatamaitic, comhthiomsaíonn feidhm cainníocht amháin, argóint na feidhme, ar a dtugtar an t-ionchur, le cainníocht eile, luach na feidhme, ar a dtugtar freisin an t-aschur. Sannann feidhm aschur díreach ar cheann amháin do gach ionchur. Deirtear f(x) nó "F de X." D'fhéadfadh an argóint agus an luach bheith ina réaduimhreacha, ach is féidir leo freisin bheith ina n-eilimintí ó aon ar leith. Is sampla simplí d'fheidhm é f(x) = 2x, áit a seasann an x d'aon réaduimhir. Comhthiomsán gach réaduimhir le réaduimhir dhá uair chomh mór leis. Mar sin, mar shampla, tá 5 comhthiomsaithe le 10, scríofa f(5) = 10. Tabhair faoi deara i gcomhair na feidhme seo gur tacar de réaduimhreacha é an fearann, agus is sraith de réaduimhreacha é an raon chomh maith; níl an dá thacar comhionann. (ga)
  • 数学における関数(かんすう、英: function、仏: fonction、独: Funktion、 蘭: functie、羅: functio、函数とも書かれる)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式のことであった。この言葉はライプニッツによって導入された。その後定義が一般化され、現代では数の集合に値をとる写像の一種であると理解されるものとなった。 (ja)
  • In matematica, una funzione è una relazione tra due insiemi, chiamati dominio e codominio della funzione, che associa a ogni elemento del dominio uno e un solo elemento del codominio. Se il dominio e il codominio della funzione sono rispettivamente indicati con e , la relazione si indica con e l’elemento che associa a si indica con (si pronuncia "effe di x"). (it)
  • 写像(しゃぞう、英: Mapping, Map)は、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。関数、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「関数」は論理的におなじ概念を表すものと理解されているが、歴史的には「関数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも関数の名の下におなじ範疇に扱われる(多価関数参照)。文献によっては「数の集合(大抵の場合実数体 R または複素数体 C の部分集合)を終域に持つ写像」をして特に「関数」と呼び、「写像」はより一般の場合に用いる。関数、二項関係、対応の各項も参照のこと。 (ja)
  • Uma função é uma relação de um conjunto com um conjunto Usualmente, denotamos uma tal função por onde é o nome da função, é chamado de domínio, é chamado de imagem e expressa a lei de correspondência (relação) dos elementos com os elementos Conforme suas características, as funções são agrupadas em várias categorias, entre as principais temos: função trigonométrica, função afim (ou função polinomial do 1° grau), função modular, função quadrática (ou função polinomial do 2° grau), função exponencial, função logarítmica, função polinomial, dentre inúmeras outras. (pt)
  • Mapa é um termo que pertence ao jargão matemático coloquial, e que pode referir-se a uma função ou a uma relação matemática, quando se trata de domínios e/ou contradomínios não necessariamente numéricos. Outros sinônimos são aplicação matemática e transformação. Mapa provem da palavra inglesa map, e também se utiliza no jargão matemático como verbo (mapear), assim como o termo mapeamento. (pt)
  • Фу́нкція (відображення, перетворення, оператор, залежник) в математиці — це правило, яке кожному елементу з першої множини — області визначення ставить у відповідність елемент з іншої множини — області значень. Часто цю другу множину називають цільовою множиною чи образом функції чи відображення. Відображення , яке ставить у відповідність кожному елементові множини єдиний елемент множини позначається тобто відображає в . (uk)
  • 映射(英語:Map),或称射影、写像(Mapping),在数学及相关的领域经常等同于函数。基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。在很多特定的数学领域中,这个术语用来描述具有与该领域相关联的特定性质函数,例如,在拓扑学中的连续函数,线性代数中的线性变换等等。 (zh)
  • في الرياضيات، الدَالَّة (الجمع: دَوَالّ) أو التابع أو الاقتران (بالإنجليزية: Function)‏ هي كائن رياضي يمثل علاقة تربط كل عنصر من مجموعة تدعى المنطلق أو مجموعة الانطلاق أو المجال بعنصر واحد وواحد فقط على الأكثر من مجموعة تدعى المستقر أو المجال المقابل أو مجموعة الوصول . أو باستعمال الصياغة الرياضية الرسمية: ينتج عن هذا التعريف عدة أمور أساسية: فإذا كان المنطلق (النطاق) هو مجموعة القيم التي يمكن أن يأخذها متغير مستقل ، فإن المستقر أو (النطاق المرافق) هو مجموعة القيم الممكنة لقيم دالة . الاقتران هو علاقة يرتبط بها كل عنصر من عناصر المجال بعنصر واحد فقط من عناصر المدى. (ar)
  • Στα μαθηματικά, συνάρτηση, ή απεικόνιση είναι μια αντιστοίχιση μεταξύ δύο συνόλων, που καλούνται σύνολο ορισμού και σύνολο τιμών, κατά την οποία κάθε ένα στοιχείο του πεδίου ορισμού αντιστοιχίζεται σε ένα και μόνο στοιχείο του πεδίου τιμών. Αν είναι μια συνάρτηση από ένα σύνολο σε ένα σύνολο , γράφουμε . Ιστορικά η έννοια της συνάρτησης εισήχθη στα μαθηματικά από τον θεμελιωτή του διαφορικού και ολοκληρωτικού λογισμού Γερμανό μαθηματικό Γκότφριντ Βίλχελμ Λάιμπνιτς το 1694. (el)
  • Matematikan, funtzio edo aplikazioa bi multzoren elementuen arteko f erlazio bat da, X multzo bateko x elementu bakoitzari Y multzoko y elementu bakarra esleitzen diona. Adibidez, bizikleta batek egindako s ibilbidea (km) honela iragandako t denborarekin (ordutan) honela lotzen dela adieraz daiteke funtzio baten bitartez, abiadura 10km/h denean: s=10t, horrela t=1,2,3 balioak ordeztuz funtzioan 1, 2 eta 3 ordutara egindako bideak 10, 20 eta 30 km dira. Aurreko adibidean, funtzioa era analitikoan edo formulaz adierazi bada ere, funtzioa multzoen arteko edonolako erlazio batez irudika daiteke, ondoko irudian azaldu bezala, betiere x balio bakoitzari y balio bakarra badagokio. Funtzioaren kontzeptua funtsezkoa da matematikan, eta horri esker zientzian eta teknologian funtsezkoa den aldaketa k (eu)
  • En mathématiques, une application est une relation entre deux ensembles pour laquelle chaque élément du premier (appelé ensemble de départ ou source) est relié à un unique élément du second (l’ensemble d'arrivée ou but). Le terme est concurrencé par celui de fonction, bien que celui-ci désigne parfois plus spécifiquement les applications dont le but est un ensemble de nombres et parfois, au contraire, englobe plus largement les relations pour lesquelles chaque élément de l'ensemble de départ est relié à au plus un élément de l'ensemble d'arrivée. (fr)
  • En matemática, se dice que una magnitud es función de otra si el valor de la primera depende del valor de la segunda. Por ejemplo, el área A de un círculo es función de su radio r (el valor del área es proporcional al cuadrado del radio, A = π·r2). Del mismo modo, la duración T de un viaje en tren entre dos ciudades separadas por una distancia (d) de 150 km depende de la velocidad (v) a la que se desplace el tren (la duración es inversamente proporcional a la velocidad, (T / v). A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la magnitud de la que depende (el radio y la velocidad) es la variable independiente. (es)
  • In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function. A function is most often denoted by letters such as f, g and h, and the value of a function f at an element x of its domain is denoted by f(x). Functions are widely used in science, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics. (en)
  • En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique. Articles détaillés : Liste de fonctions numériques et Lexique de propriétés de fonctions. (fr)
  • Fungsi dalam istilah matematika merupakan pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain atau variabel bebas) kepada anggota himpunan yang lain (dinamakan sebagai kodomain atau variabel terikat) yang dapat dinyatakan dengan lambang , atau dapat menggunakan lambang , . Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah "fungsi", "pemetaan", "peta", "transformasi", dan "operator" biasanya dipakai secara sinonim. (in)
  • Il termine mappa in matematica è spesso usato come sinonimo di funzione. Quindi, per esempio, una mappa parziale è una funzione parziale e una mappa totale è una funzione totale. Termini correlati come dominio, codominio, funzione iniettiva, funzione continua, possono essere applicati sia a mappe che a funzioni con lo stesso significato. Alcuni autori come Serge Lang usano mappa come termine generico riferito all'associazione di un elemento dell'immagine con ogni elemento del dominio, mentre usano funzione solo per riferirsi a mappe nelle quali l'immagine è un campo. (it)
  • Funkcja (łac. functio, -onis „odbywanie, wykonywanie, czynność”) – dla danych dwóch zbiorów i przyporządkowanie każdemu elementowi zbioru dokładnie jednego elementu zbioru . Oznacza się ją na ogół itd. Jeśli funkcja przyporządkowuje elementom zbioru elementy zbioru to zapisujemy to następująco: Zbiór nazywa się dziedziną, a zbiór – przeciwdziedziną funkcji Zbiór wszystkich funkcji ze zbioru do zbioru oznacza się często .Ponadto: (pl)
  • In de wiskunde drukt een functie een afhankelijkheid uit van één element van een ander. Meestal wordt het begrip gebruikt in de traditionele context waarin deze elementen getallen zijn. Een functie is dan een afbeelding van getallen, die voorschrijft wat de functiewaarde is van het argument . De functie met functiewaarde bijvoorbeeld, bepaalt van elk reëel getal als functiewaarde het dubbele van dit getal. (nl)
  • In de wiskunde is het begrip afbeelding de verzamelingtheoretische interpretatie van het begrip functie. Omdat afbeeldingen gedefinieerd kunnen worden voor willekeurige verzamelingen, kan het begrip afbeelding ook gezien worden als een generalisatie van het begrip functie, dat gewoonlijk zo gedefinieerd is dat een functie altijd getallen als resultaat heeft. (nl)
  • En funktion är en regel som till varje invärde kopplar utvärden. Ofta beskrivs sambandet mellan invärde och utvärde med en matematisk formel, där invärdet representeras med en eller flera variabler, alternativt med en tabell eller grafiskt med en graf, ett sambandsdiagram eller ett pildiagram. En viktig egenskap hos funktioner är att de är deterministiska (det vill säga konsekventa, så att varje invärde alltid ger samma utvärde). Detta gör att funktionen kan ses som en maskin, som systematiskt levererar utvärden så fort man stoppar in invärden. (sv)
  • Фу́нкция в математике — соответствие между элементами двух множеств — правило, по которому каждому элементу первого соответствует один и только один элемент второго множества. Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так, значение переменной однозначно определяет значение выражения ,также значение месяца однозначно определяет значение следующего за ним месяца.«Житейский» пример функции: каждому человеку можно однозначно поставить в соответствие его биологического отца. (ru)
  • Inom matematik är en avbildning, T, från en mängd X till en mängd Y, en hopparning av vissa element från X med vissa element från Y. Denna parning är sådan att ett X-element paras ihop med bara ett Y-element; X-elementet x paras ihop med Y-elementet Tx. En operator är en avbildning där mängden X är ett vektorrum och där mängden Y också är ett vektorrum. En funktional är en avbildning där mängden X är ett vektorrum och mängden Y är en delmängd av de komplexa talen. Mängden av de komplexa talen är ett vektorrum, så en funktional är en särskild slags operator och även en särskild slags funktion. (sv)
  • 函数(英語:Function)在数学中为两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应​​唯一一项输出值集合中的元素。例如实数对应到其平方的关系就是一个函数,若以作为此函数的输入值,所得的输出值便是。 为方便起见,一般做法是以符号等等来指代一个函数。若函数以作为输入值,则其输出值一般写作,读作'f of x' 。上述的平方函数关系写成数学式记为。函数的概念并不局限于数之间的映射关系,例如若定义函数为每个国家当前的首都,那么给予输入值英国就会输出唯一值伦敦:。 气温的分布也能用函数表达,以时间和地点作为参量输入,以该时该地的温度作为输出。表达函数有多种方式,例如解析法是用数学式表达两个变量之间的对应关系,图像法是用坐标系上的函數圖形表达两个变量之间的对应关系,列表法用表格表达两个变量之间的对应关系。 (zh)
rdfs:label
  • تطبيق (رياضيات) (ar)
  • دالة (ar)
  • Funkce (matematika) (cs)
  • Funció (ca)
  • Zobrazení (matematika) (cs)
  • Συνάρτηση (el)
  • Funktion (Mathematik) (de)
  • Funkcio (matematiko) (eo)
  • Función (matemática) (es)
  • Function (mathematics) (en)
  • Funtzio (matematika) (eu)
  • Fonction (mathématiques) (fr)
  • Application (mathématiques) (fr)
  • Feidhm (matamaitic) (ga)
  • Fungsi (matematika) (in)
  • Peta (matematika) (in)
  • Mappa (matematica) (it)
  • 関数 (数学) (ja)
  • 写像 (ja)
  • Funzione (matematica) (it)
  • 함수 (ko)
  • Afbeelding (wiskunde) (nl)
  • Functie (wiskunde) (nl)
  • Função (matemática) (pt)
  • Mapa (matemática) (pt)
  • Funkcja (pl)
  • Funktion (sv)
  • Avbildning (sv)
  • Функция (математика) (ru)
  • Функція (математика) (uk)
  • 映射 (zh)
  • 函数 (zh)
rdfs:seeAlso
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:notableIdea of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:notableIdeas of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License