An Entity of Type: scientist, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa.

Property Value
dbo:abstract
  • La geometria projectiva és la branca de les matemàtiques que estudia les nocions intuïtives de "perspectiva" i d'"horitzó". Analitza les propietats de les figures invariants per projecció. (ca)
  • في الرياضيات، الهندسة الإسقاطية (بالإنجليزية: Projective geometry)‏ هي دراسة الخصائص الهندسية الثابتة مع التحويلات المنظورية. بشكل شبيه للهندسة الأفينية والهندسة الإقليدية من الممكن تطوير الهندسة الإسقاطية من ، حيث تكون متحولة بالنسبة للتحويلات. تم تطوير الهندسة الإسقاطية على أيدي جيرار ديسارغو وآخرين الذين قاموا بوضع مبادئ المنظور. (ar)
  • Projektivní geometrie představuje takovou geometrii, která zkoumá vlastnosti, které se nemění u (kolineací). Model pro tuto geometrii je obvykle projektivní rovina anebo projektivní prostor. V této geometrii jsou definovány body a přímky, nikoli však úhly a vzdálenosti. Projektivní geometrie byla historicky inspirována potřebami renesančního umění – zvládnutím perspektivy v malířství. Matematickým zachycením těchto poznatků se zabývali Desargues, Poncelet, Möbius, Cayley a jiní. Důležitou vlastností projektivní geometrie je tzv. "". Například v geomerii projektivní roviny vyjadřuje fakt, že když se v jejích tvrzeních zamění slova bod a přímka a spojení "ležet na přímce" za "protínat se v bodě", tak se zachová pravdivost. Např. výrok "Každé dva různé body leží na jediné přímce" je duální k výroku "Každé dvě různé přímky se protínají v jediném bodě", oba jsou pravdivé. (cs)
  • Se llama geometría proyectiva a la rama de la matemática que estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida. A menudo se usa esta palabra también para hablar de la teoría de la proyección llamada geometría descriptiva. (es)
  • Staidéar ar fhigiúir gheoiméadracha agus a bhfuil i gcomhar acu lena scáileanna (mar shampla, airíonna líne nó cuair, sainmhínithe ag iltéarmach de chéim ar leith). Cheap Gerard Desargues (1591-1661) an t-ábhar, agus bhain feidhm as chun staidéar na gcónach a shimpliú, mar is coibhéiseach na héilipsí, na parabóilí is na hipearbóilí uile sa gheoiméadracht theilgeach. Ar an mbealach céanna, d'éirigh le Newton na cuair chiúbacha uile a shimpliú chuig 5 chineál. D'athbheoigh an matamaiticeoir Francach Jean Victor Poncelet (1788-1867) is an matamaiticeoir Gearmánach August Ferdinand Möbius an t-ábhar sna 1820idí, agus ó shin is í an brainse geoiméadrachta is bunúsaí dá bhfuil ann. Ní chaomhnaítear airíonna a bhaineann le fad i dtrasfhoirmithe teilgeacha. Is tearc iad airíonna teilgeacha figiúr, bíodh gur bunúsach iad. Is áisiúil an gheoiméadracht theilgeach chun ceisteanna faoi líon cuar de chineálacha ar leith a fhreagairt agus staidéar geoméadrach a dhéanamh ar réiteach cothromóidí. (ga)
  • En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. (fr)
  • Di dalam matematika, geometri projektif adalah kajian sifat-sifat geometris yang invarian di bawah . Ini berarti bahwa geometri projektif memiliki tatanan, , dan himpunan selektif yang berbeda dibandingkan konsep-konsep geometri elementer. Intuisi-intuisi dasarnya adalah bahwa ruang projektif memiliki lebih banyak titik daripada ruang euklides, di dalam dimensi yang diberikan, dan bahwa transformasi geometris adalah diizinkan untuk memindahkan titik-titik ekstra (yang disebut "") ke titik-titik tradisional, dan begitu juga sebaliknya. Sifat-sifat yang penuh makna di dalam geometri projektif disokong oleh gagasan baru transformasi ini, yang lebih radikal dalam efek-efeknya dibanding keterekspresiannya oleh suatu dan translasi . Isu pertama bagi para ahli geometri adalah bahasa geometri manakah yang memadai bagi situasi baru ini? Tidaklah mungkin untuk memperbincangkan sudut dalam geometri projektif karena ia ada dalam geometri euklides, karena sudut adalah sebuah contoh dari konsep yang tidak invarian di bawah transformasi projektif, seperti yang tampak jelas dalam gambar perspektif. Satu sumber untuk geometri projektif adalah tentu saja teori perspektif. Perbedaan lainnya dari geometri elementer adalah cara di mana dapat dikatakan saling bertemu di sebuah , ketika konsep ini ditranslasikan ke dalam suku-suku geometri projektif. Dan lagi, gagasan ini memiliki landasan intuitif, misalnya rel kereta api yang bertemu di cakrawala menurut gambar perspektif. Lihatlah untuk dasar-dasar geometri projektif dalam dua dimensi. Sementara beberapa gagasan telah hadir terlebih dahulu, geometri projektif sebagian besarnya merupakan hasil pengembangan dari abad ke-19. Satu rancang bangun raksasa dari berbagai penelitian telah menjadikannya sebagai cabang geometri yang paling representatif pada masa itu. Geometri projektif adalah teori tentang , karena koordinat-koordinat yang digunakan adalah bilangan kompleks. Beberapa lembaran utama matematika yang lebih abstrak (termasuk , , dan -nya Felix Klein yang mengarah pada kajian ) dibangun di atas geometri aljabar. Geometri projektif juga merupakan subjek dengan banyak praktisi yang bekerja deminya, di bawah panji-panji . Cabang lain yang muncul dari kajian-kajian aksiomatis geometri projektif adalah . Cabang geometri projektif sendiri saat ini dibagi ke dalam banyak sub-cabang penelitian, dua contoh darinya adalah geometri aljabar projektif (kajian varietas projektif) dan (kajian invarian diferensial transformasi projektif). (in)
  • La geometria proiettiva è la parte della geometria che modellizza i concetti intuitivi di prospettiva e orizzonte. Definisce e studia gli enti geometrici usuali (punti, rette, ...) senza utilizzare misure o confronto di lunghezze. Può essere pensata informalmente come la geometria che nasce dal collocare il proprio occhio in un punto dello spazio, così che ogni linea che intersechi l'"occhio" appaia solo come un punto. Le grandezze degli oggetti non sono direttamente quantificabili (perché guardando il mondo con un occhio soltanto non abbiamo informazioni sulla profondità) e l'orizzonte è considerato parte integrante dello spazio. Come conseguenza, nella geometria piana proiettiva due rette si intersecano sempre, non esistono quindi due rette parallele e distinte che non hanno punti di intersezione. (it)
  • 数学における射影幾何学(しゃえいきかがく、英: projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 こういった考え方は古くからあったものだが、射影幾何学として発展するのは主に19世紀のことである。多くの研究が取りまとめられ、射影幾何学は当時の幾何学の最も代表的な分野となった。ここでいう射影幾何学は、座標系()の各成分が複素数となる複素射影空間についての理論である。そしていくつかのより抽象的な数学の系譜(例えば、、あるいはの研究へつながるフェリックス・クラインのエルランゲン・プログラムなど)が射影幾何学を礎として打ち立てられていった。これらの主題に関わった多くの研究者は、肩書きとしては (synthetic geometry) に属する研究者である。他にも、射影幾何学の公理的研究から生まれた研究分野として有限幾何学がある。 射影幾何学自体も現在では多くの研究分野へ細分化が進んでおり、主なものとしては、射影代数幾何学(射影代数多様体の研究)と(射影変換に関する微分不変量の研究)の二つを挙げることができるだろう。 (ja)
  • In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa. Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. It is not possible to refer to angles in projective geometry as it is in Euclidean geometry, because angle is an example of a concept not invariant with respect to projective transformations, as is seen in perspective drawing. One source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which parallel lines can be said to meet in a point at infinity, once the concept is translated into projective geometry's terms. Again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. See projective plane for the basics of projective geometry in two dimensions. While the ideas were available earlier, projective geometry was mainly a development of the 19th century. This included the theory of complex projective space, the coordinates used (homogeneous coordinates) being complex numbers. Several major types of more abstract mathematics (including invariant theory, the Italian school of algebraic geometry, and Felix Klein's Erlangen programme resulting in the study of the classical groups) were based on projective geometry. It was also a subject with many practitioners for its own sake, as synthetic geometry. Another topic that developed from axiomatic studies of projective geometry is finite geometry. The topic of projective geometry is itself now divided into many research subtopics, two examples of which are projective algebraic geometry (the study of projective varieties) and projective differential geometry (the study of differential invariants of the projective transformations). (en)
  • In de wiskunde is projectieve meetkunde een meetkunde zonder metriek. Ze vond haar oorsprong vroeg in de 19e eeuw in de principes van lijnperspectief in de beeldende kunst. Projectieve meetkunde is de studie van meetkundige eigenschappen die invariant zijn onder projectieve transformaties. Dit betekent dat, in vergelijking met elementaire meetkunde, het object van projectieve meetkunde niet de gewone ruimte is, maar een projectieve ruimte en er een geselecteerd aantal fundamentele meetkundige begrippen zijn. Projectieve ruimten van een bepaalde dimensie bestaan uit meer punten, dan de overeenkomstige euclidische ruimte, en er zijn meetkundige transformaties toegestaan die de extra punten, de zogenaamde “punten op oneindig”, naar traditionele punten verplaatsen, en vice versa. De belangrijkste eigenschappen in de projectieve meetkunde zijn de eigenschappen die betrekking hebben op dit nieuwe idee van transformaties die verder reiken dan kan worden uitgedrukt door affiene transformaties. In de projectieve meetkunde kan niet op dezelfde manier over hoeken gesproken worden als in de euclidische meetkunde. Hoeken zijn een voorbeeld van een begrip dat niet invariant is onder projectieve transformaties, zoals duidelijk te zien is bij perspectieftekenen. Een ander verschil met de elementaire meetkunde is dat parallelle lijnen, op geschikte manier gedefinieerd in de projectieve meetkunde, een punt op oneindig als snijpunt hebben. Ook dit begrip heeft een intuïtieve basis, denk aan spoorrails die in een perspectivische tekening aan de horizon bij elkaar komen. Zie het artikel projectieve vlak voor de basisbeginselen van de projectieve meetkunde in twee dimensies. Hoewel de ideeën eerder beschikbaar waren, vond de ontwikkeling van de projectieve meetkunde vooral plaats in de negentiende eeuw. Een enorme hoeveelheid onderzoek maakte de projectieve meetkunde in de 19e eeuw tot het meest representatieve gebied van de meetkunde. Dit was de theorie van de complexe projectieve ruimte, aangezien de gebruikte coördinaten (homogene coördinaten) complexe getallen waren. Een aantal belangrijke onderdelen van de meer abstracte wiskunde (met inbegrip van de invariantentheorie, de Italiaanse school van de algebraïsche meetkunde en Felix Kleins Erlanger programma, dat aan de basis stond van de klassieke groepen) bouwde voort op de projectieve meetkunde. Het was onder de vlag van de synthetische meetkunde ook een onderwerp met een groot aantal beoefenaars om eigen wille. Een ander veld dat is voortgekomen uit de axiomatische studie van de projectieve meetkunde is de eindige meetkunde. Het gebied van de projectieve meetkunde is heden ten dage onderverdeeld in vele onderzoeksdeelgebieden. Twee voorbeelden zijn de projectieve algebraïsche meetkunde (de studie van projectieve variëteiten) en de (de studie van differentiaalinvarianten van de projectieve transformaties). (nl)
  • Geometria rzutowa – dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822. Przekształceniem rzutowym jest każde wzajemnie jednoznaczne przekształcenie przestrzeni rzutowej wymiaru powyżej 1 zachowujące współliniowość punktów. Punktem w nieskończoności (punktem niewłaściwym, punktem nieskończenie dalekim) jest pewien kierunek, czyli pewien zbiór prostych wzajemnie równoległych. Płaszczyznę rzutową otrzymuje się przez dodanie do płaszczyzny euklidesowej punktów w nieskończoności. Prostą rzutową nazywa się prostą euklidesową uzupełnioną o punkt w nieskończoności (tzw. proste właściwe) lub zbiór wszystkich punktów w nieskończoności (tzw. prosta niewłaściwa). Na płaszczyźnie rzutowej nie ma prostych równoległych i każde dwie proste przecinają się w jednym punkcie; podobną konstrukcję przeprowadza się w przestrzeniach o więcej niż dwóch wymiarach. Ważnym pojęciem geometrii rzutowej jest zasada dualności, mówiąca, że dowolne prawdziwe twierdzenie na płaszczyźnie rzutowej pozostaje prawdziwe, jeśli zamienimy w nim pojęcia "prosta" i "punkt" (i odpowiednio "przechodzi przez" z "leży na"). Przykładami twierdzeń dualnych są twierdzenie Brianchona i twierdzenie Pascala. (pl)
  • Geometria projetiva ou projectiva, é o estudo das propriedades descritivas das figuras geométricas.A Geometria Projetiva, consolida-se a partir de uma publicação de Jean Victor Poncelet, intitulada Tratado das Propriedades Projetivas das Figuras no ano de 1822. Ampliando a linguagem da "Simples Geometria" aproximando-a da Geometria analítica e, sobretudo oferecendo meios próprios para demonstrar e fazer descobrir as propriedades de que gozam as figuras, quando se as considera de uma maneira abstrata e independente de qualquer grandeza absoluta e determinada. (pt)
  • Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства.Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции. Проективная геометрия может изучаться как с чисто геометрической точки зрения, так с аналитической (с помощью однородных координат) и с алгебраической, рассматривая проективную плоскость как структуру над полем. Часто, и исторически, вещественная проективная плоскость рассматривается как Евклидова плоскость с добавлением «прямой в бесконечности». Тогда как свойства фигур, с которыми имеет дело Евклидова геометрия, являются метрическими (конкретные величины углов, отрезков, площадей), а эквивалентность фигур равнозначна их конгруэнтности (то есть когда фигуры могут быть переведены одна в другую посредством движения с сохранением метрических свойств), существуют более «глубоко лежащие» свойства геометрических фигур, которые сохраняются преобразованиями более общего типа, чем движение. Проективная геометрия занимается изучением свойств фигур, инвариантных при классе проективных преобразований, а также самих этих преобразований. Проективная геометрия дополняет Евклидову, предоставляя красивые и простые решения для многих задач, осложнённых присутствием параллельных прямых. Особенно проста и изящна проективная теория конических сечений. (ru)
  • 在數學裡,投影幾何(英語:projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、射影空间及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 雖然這些想法很早以前便已存在,但投影幾何的發展主要還是到19世紀才開始。大量的研究使得投影幾何變成那時幾何的代表學科。當使用複數的坐標(齊次坐標)時,即為研究之理論。一些更抽象的數學(包括不變量理論、,以及菲利克斯·克萊因那導致古典群誕生的愛爾蘭根綱領)都建立在投影幾何之上。此一學科亦吸引了許多學者,在(synthetic geometry)的旗幟之下。另一個從投影幾何之公理化研究誕生的領域為有限幾何。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及(研究投影變換的微分不變量)。 (zh)
  • Проєкти́вна геоме́трія — розділ геометрії, який вивчає проєктивні площини та проєктивний простір. При аксіоматичній побудові проєктивної площини постулюється обов'язковий перетин двох різних прямих, замість аксіоми існування єдиної паралельної у геометрії Евкліда. Таким чином на проєктивній площині дві різні точки визначають пряму, дві різні прямі визначають точку. Це породжує головну особливість проєктивної геометрії — принцип дуальності, який додає витончену симетрію для багатьох конструкцій. Проєктивна геометрія може вивчатися як з чисто геометричної точки зору, так з аналітичної (за допомогою однорідних координат) і з алгебраїчної, розглядаючи проєктивну площину як структуру над полем. Часто, і історично, дійсна проєктивна площина розглядається як Евклідова площина з додаванням «прямої у нескінченності». Проєктивна геометрія доповнює Евклідову, надаючи красиві і прості рішення для багатьох завдань, ускладнених присутністю паралельних прямих. Особливо проста й витончена проєктивна теорія конічних перетинів. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 243849 (xsd:integer)
dbo:wikiPageLength
  • 38605 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 999420950 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • La geometria projectiva és la branca de les matemàtiques que estudia les nocions intuïtives de "perspectiva" i d'"horitzó". Analitza les propietats de les figures invariants per projecció. (ca)
  • في الرياضيات، الهندسة الإسقاطية (بالإنجليزية: Projective geometry)‏ هي دراسة الخصائص الهندسية الثابتة مع التحويلات المنظورية. بشكل شبيه للهندسة الأفينية والهندسة الإقليدية من الممكن تطوير الهندسة الإسقاطية من ، حيث تكون متحولة بالنسبة للتحويلات. تم تطوير الهندسة الإسقاطية على أيدي جيرار ديسارغو وآخرين الذين قاموا بوضع مبادئ المنظور. (ar)
  • Se llama geometría proyectiva a la rama de la matemática que estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida. A menudo se usa esta palabra también para hablar de la teoría de la proyección llamada geometría descriptiva. (es)
  • En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. (fr)
  • Geometria projetiva ou projectiva, é o estudo das propriedades descritivas das figuras geométricas.A Geometria Projetiva, consolida-se a partir de uma publicação de Jean Victor Poncelet, intitulada Tratado das Propriedades Projetivas das Figuras no ano de 1822. Ampliando a linguagem da "Simples Geometria" aproximando-a da Geometria analítica e, sobretudo oferecendo meios próprios para demonstrar e fazer descobrir as propriedades de que gozam as figuras, quando se as considera de uma maneira abstrata e independente de qualquer grandeza absoluta e determinada. (pt)
  • Projektivní geometrie představuje takovou geometrii, která zkoumá vlastnosti, které se nemění u (kolineací). Model pro tuto geometrii je obvykle projektivní rovina anebo projektivní prostor. V této geometrii jsou definovány body a přímky, nikoli však úhly a vzdálenosti. Projektivní geometrie byla historicky inspirována potřebami renesančního umění – zvládnutím perspektivy v malířství. Matematickým zachycením těchto poznatků se zabývali Desargues, Poncelet, Möbius, Cayley a jiní. (cs)
  • In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa. (en)
  • Staidéar ar fhigiúir gheoiméadracha agus a bhfuil i gcomhar acu lena scáileanna (mar shampla, airíonna líne nó cuair, sainmhínithe ag iltéarmach de chéim ar leith). Cheap Gerard Desargues (1591-1661) an t-ábhar, agus bhain feidhm as chun staidéar na gcónach a shimpliú, mar is coibhéiseach na héilipsí, na parabóilí is na hipearbóilí uile sa gheoiméadracht theilgeach. Ar an mbealach céanna, d'éirigh le Newton na cuair chiúbacha uile a shimpliú chuig 5 chineál. D'athbheoigh an matamaiticeoir Francach Jean Victor Poncelet (1788-1867) is an matamaiticeoir Gearmánach August Ferdinand Möbius an t-ábhar sna 1820idí, agus ó shin is í an brainse geoiméadrachta is bunúsaí dá bhfuil ann. Ní chaomhnaítear airíonna a bhaineann le fad i dtrasfhoirmithe teilgeacha. Is tearc iad airíonna teilgeacha figiúr, (ga)
  • Di dalam matematika, geometri projektif adalah kajian sifat-sifat geometris yang invarian di bawah . Ini berarti bahwa geometri projektif memiliki tatanan, , dan himpunan selektif yang berbeda dibandingkan konsep-konsep geometri elementer. Intuisi-intuisi dasarnya adalah bahwa ruang projektif memiliki lebih banyak titik daripada ruang euklides, di dalam dimensi yang diberikan, dan bahwa transformasi geometris adalah diizinkan untuk memindahkan titik-titik ekstra (yang disebut "") ke titik-titik tradisional, dan begitu juga sebaliknya. (in)
  • La geometria proiettiva è la parte della geometria che modellizza i concetti intuitivi di prospettiva e orizzonte. Definisce e studia gli enti geometrici usuali (punti, rette, ...) senza utilizzare misure o confronto di lunghezze. (it)
  • 数学における射影幾何学(しゃえいきかがく、英: projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 (ja)
  • In de wiskunde is projectieve meetkunde een meetkunde zonder metriek. Ze vond haar oorsprong vroeg in de 19e eeuw in de principes van lijnperspectief in de beeldende kunst. Projectieve meetkunde is de studie van meetkundige eigenschappen die invariant zijn onder projectieve transformaties. Dit betekent dat, in vergelijking met elementaire meetkunde, het object van projectieve meetkunde niet de gewone ruimte is, maar een projectieve ruimte en er een geselecteerd aantal fundamentele meetkundige begrippen zijn. Projectieve ruimten van een bepaalde dimensie bestaan uit meer punten, dan de overeenkomstige euclidische ruimte, en er zijn meetkundige transformaties toegestaan die de extra punten, de zogenaamde “punten op oneindig”, naar traditionele punten verplaatsen, en vice versa. De belangrijk (nl)
  • Geometria rzutowa – dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822. Przekształceniem rzutowym jest każde wzajemnie jednoznaczne przekształcenie przestrzeni rzutowej wymiaru powyżej 1 zachowujące współliniowość punktów. (pl)
  • Проективная геометрия — раздел геометрии, изучающий проективные плоскости и пространства.Главная особенность проективной геометрии состоит в принципе двойственности, который прибавляет изящную симметрию во многие конструкции. Проективная геометрия может изучаться как с чисто геометрической точки зрения, так с аналитической (с помощью однородных координат) и с алгебраической, рассматривая проективную плоскость как структуру над полем. Часто, и исторически, вещественная проективная плоскость рассматривается как Евклидова плоскость с добавлением «прямой в бесконечности». (ru)
  • Проєкти́вна геоме́трія — розділ геометрії, який вивчає проєктивні площини та проєктивний простір. При аксіоматичній побудові проєктивної площини постулюється обов'язковий перетин двох різних прямих, замість аксіоми існування єдиної паралельної у геометрії Евкліда. Таким чином на проєктивній площині дві різні точки визначають пряму, дві різні прямі визначають точку. Це породжує головну особливість проєктивної геометрії — принцип дуальності, який додає витончену симетрію для багатьох конструкцій. Проєктивна геометрія може вивчатися як з чисто геометричної точки зору, так з аналітичної (за допомогою однорідних координат) і з алгебраїчної, розглядаючи проєктивну площину як структуру над полем. Часто, і історично, дійсна проєктивна площина розглядається як Евклідова площина з додаванням «прямої (uk)
  • 在數學裡,投影幾何(英語:projective geometry)研究在投影變換下不變的幾何性質。與初等幾何不同,投影幾何有不同的設定、射影空间及一套基本幾何概念。直覺上,在一特定維度上,投影空間比歐氏空間擁有「更多」的點,且允許透過幾何變換將這些額外的點(稱之為無窮遠點)轉換成傳統的點,反之亦然。 投影幾何中有意義的性質均與新的變換概念有關,此一變換比透過變換矩陣或平移(仿射變換)表示的變換更為基礎。對幾何學家來說,第一個問題是要找到一個足以描述這個新的想法的幾何語言。不可能在投影幾何內談論角,如同在歐氏幾何內談論一般,因為角並不是個在投影變換下不變的概念,如在透視圖中所清楚看到的一般。投影幾何的許多想法來源來自於對透視圖的理論研究。另一個與初等幾何不同之處在於,平行線可被認為會在無窮遠點上交會,一旦此一概念被轉換成投影幾何的詞彙之後。這個概念在直觀上,正如同在透視圖上會看到鐵軌在水平線上交會一般。有關投影幾何在二維上的基本說明,請見投影平面。 投影幾何的領域又可細分成許多的研究領域,其中的兩個例子為投影代數幾何(研究投影簇)及(研究投影變換的微分不變量)。 (zh)
rdfs:label
  • Projective geometry (en)
  • هندسة إسقاطية (ar)
  • Geometria projectiva (ca)
  • Projektivní geometrie (cs)
  • Projektive Geometrie (de)
  • Projekcia geometrio (eo)
  • Geometría proyectiva (es)
  • Géométrie projective (fr)
  • Geoiméadracht theilgeach (ga)
  • Geometri proyektif (in)
  • Geometria proiettiva (it)
  • 射影幾何学 (ja)
  • 사영기하학 (ko)
  • Projectieve meetkunde (nl)
  • Geometria rzutowa (pl)
  • Geometria projetiva (pt)
  • Проективная геометрия (ru)
  • Projektiv geometri (sv)
  • 射影几何 (zh)
  • Проєктивна геометрія (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:mainInterest of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is dbp:mainInterests of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License