An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A.

Property Value
dbo:abstract
  • In mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A. The projective line P(A) is equipped with a group of homographies. The homographies are expressed through use of the matrix ring over A and its group of units V as follows: If c is in Z(U), the center of U, then the group action of matrix on P(A) is the same as the action of the identity matrix. Such matrices represent a normal subgroup N of V. The homographies of P(A) correspond to elements of the quotient group V / N . P(A) is considered an extension of the ring A since it contains a copy of A due to the embedding E : a → U[a, 1]. The multiplicative inverse mapping u → 1/u, ordinarily restricted to the group of units U of A, is expressed by a homography on P(A): Furthermore, for u,v ∈ U, the mapping a → uav can be extended to a homography: Since u is arbitrary, it may be substituted for u−1.Homographies on P(A) are called linear-fractional transformations since (en)
  • 数学における環上の射影直線(しゃえいちょくせん、英: projective line over a ring)は体上の射影直線を一般化するものである。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1271901 (xsd:integer)
dbo:wikiPageLength
  • 21854 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116155541 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 数学における環上の射影直線(しゃえいちょくせん、英: projective line over a ring)は体上の射影直線を一般化するものである。 (ja)
  • In mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A. (en)
rdfs:label
  • 環上の射影直線 (ja)
  • Projective line over a ring (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License