An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a (possibly infinite) collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. The basic idea of ordinal numbers is to generalize this process to possibly infinite collections and to provide a "label" for each step in the process. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order.

Property Value
dbo:abstract
  • العدد الترتيبي هو عدد يُرتّب كل مدخل في مجموعة حسب موقعها ضمن المدخلات الأخرى. فعلى سبيل المثال: إذا كان س أكبر من ص، وص أكبر من ع، وع أكبر ن، فإن المقياس الترتيبي لهذه المجموعة {س، ص، ع، ن} هو: 1. * س 2. * ص 3. * ع 4. * ن ويمكن أن تستخدم الكلمات في الوصف أيضًا، كتصنيف المدخل على أنه "جيد" أو "مقبول" أو "سيئ". ومن الأمثلة على المقياس الترتيبي هو مقياس موس لقياس صلابة المواد. وفي الرياضيات فإن الأعداد الترتيبية تعتبر امتدادًا للأعداد الطبيعية وذلك لأخذ المتتاليات اللانهائية، والتي وضعها جورج كانتور، بعين الاعتبار. (ar)
  • Els nombres ordinals, o senzillament ordinals, són nombres usats per a denotar la posició en una successió ordenada: primer, segon, tercer, quart, etc. El matemàtic Georg Cantor va mostrar el 1897 com estendre aquest concepte més enllà dels nombres naturals fins a l'infinit, i com fer aritmètica amb aquests ordinals transfinits. Hom pot (i és usual de fer) definir el nombre natural n com el conjunt de tots els nombres naturals menors: 0 = {} (conjunt buit) 1 = {0} = { { } } 2 = {0,1} = { {}, { {} } } 3 = {0,1,2} = {{}, { {} }, { {}, { {} } }} 4 = {0,1,2,3} = { {}, { {} }, { {}, { {} } }, {{}, { {} }, { {}, { {} } }} } etc. Vist d'aquesta manera, cada nombre natural és un conjunt ben ordenat: el conjunt 4, per exemple, té elements 0, 1, 2, 3, que són ordenats naturalment com a 0<1<2<3 (ben ordenats). Un nombre natural és menor que un altre nombre, si i només si, és element de l'altre. (ca)
  • V teorii množin je ordinální číslo zobecněním myšlenky pořadí prvku v uspořádané množině, jež je v přirozeném jazyce vyjádřena řadovou číslovkou jako „první“ či „pátý“. Pojem ordinálního čísla myšlenku zobecňuje i na nekonečné uspořádané množiny. (cs)
  • Zenbaki ordinalak zenbakien arteko ordena bat adierazteko erabiltzen direnak dira. Hauek adierazteko orduan euskal literaturan eta idazleen artean erabilera eta ohitura anitz izan direnez, batasuna egiteko Euskaltzaindiak beti puntu bat jartzea gomendatzen du ordinala adierazteko. Alegia, garren esango litzatekeen tokian puntua jarri behar da sistematikoki, inolako bereizketarik egin gabe erromatar zenbakien eta beste sistemetako zenbakien artean. Horrenbestez, zenbakien ondoren puntua erabiliko da eta garren zenbakiak letraz idazten direneko bakarrik utziko da. Ordinala adierazteko marka horri artikulua eta kasu marka gaineratuko zaizkio, hala beharko balitz, edozein sintagmarekin gertatzen den bezala: Irakurtzeko orduan "hogeigarren mendea", "hamargarren mendea", e.a. irakurriko dira. Azkeneko adibideak, berriz, honela: "hamazazpigarren, hemezortzigarren eta hemeretzigarren mendeetan", "hamazazpi, hemezortzi eta hemeretzigarren mendeetan", "Juan Karlos lehenak esan duenez", e.a. Zenbait kasutan, hala ere, ordinal horiek ez dira beti benetako ordinal gisa erabiltzen eta ahoskatzeko orduan ez da "garren" erabiltzen: (eu)
  • En teoría de conjuntos, un número ordinal, o simplemente ordinal, es un representante del tipo de orden de un conjunto bien ordenado. De este modo, los ordinales clasifican todos los posibles conjuntos bien ordenados. Fueron introducidos por Georg Cantor en 1897. Los ordinales finitos (así como los cardinales finitos) son los números naturales 0, 1, 2,..., puesto que dos órdenes totales de un conjunto finito son . Al primer ordinal infinito se le denota ω. En el caso infinito, los ordinales ofrecen una distinción más fina que los cardinales, que sólo representan la cantidad de elementos. Así, mientras sólo existe un cardinal infinito numerable ℵ0, existen infinitos ordinales infinitos y numerables: que se corresponden con distintas maneras de ordenar el conjunto de los números naturales. (es)
  • En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession. Georg Cantor a été amené (lors de ses travaux sur les séries trigonométriques) à nommer de même le concept qu'il avait introduit à cette occasion pour caractériser le type d'ordre des ensembles qu'il rencontrait, de façon plus précise qu'en les mesurant par leur cardinalité (leur « nombre d'éléments »). Les ordinaux finis peuvent en fait être identifiés aux entiers naturels qui s'identifient eux-mêmes aux cardinaux finis, mais, dans le cas des ensembles infinis, ce n'est plus vrai : tous les cardinaux sont encore identifiables à des ordinaux, mais la réciproque est fausse. (fr)
  • In matematica, i numeri ordinali costituiscono un'estensione dei numeri naturali che tiene conto anche di successioni infinite, introdotta da Georg Cantor nel 1897. (it)
  • Bilangan ordinal dalam teori himpunan adalah jenis tatanan dari suatu himpunan yang teratur baik. Biasanya diidentifikasi dengan himpunan transitif hereditari. Bilangan ordinal merupakan perluasan bilangan asli, berbeda dengan integer dan dengan bilangan kardinal. Sebagaimana jenis bilangan lain, bilangan ordinal dapat dijumlahkan, dikalikan, dan dipangkatkan. Bilangan ordinal diperkenalkan oleh Georg Cantor pada tahun 1883 untuk mengakomodasi urutan dan untuk menggolongkan himpunan turunan, yang sebelumnya telah disampaikannya pada tahun 1872 ketika mempelajari keunikan . Contoh: * Himpunan bilangan ordinal kurang dari 3 adalah 3 = ( 0, 1, 2 }, bilangan ordinal terkecil tidak kurang dari 3. * Himpunan bilangan ordinal terhingga adalah tak terhingga, bilangan ordinal tak terhingga terkecil: ω. * Himpunan bilangan ordinal terhitung adalah tak terhitung, bilangan ordinal tak terhitung terkecil: ω1. (in)
  • 数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。 (ja)
  • In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a (possibly infinite) collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. The basic idea of ordinal numbers is to generalize this process to possibly infinite collections and to provide a "label" for each step in the process. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order. An ordinal number is used to describe the order type of a well-ordered set (though this does not work for a well-ordered proper class). A well-ordered set is a set with a relation < such that: * (Trichotomy) For any elements x and y, exactly one of these statements is true: * x < y * y < x * x = y * (Transitivity) For any elements x, y, z, if x < y and y < z, then x < z. * (Well-foundedness) Every nonempty subset has a least element, that is, it has an element x such that there is no other element y in the subset where y < x. Two well-ordered sets have the same order type, if and only if there is a bijection from one set to the other that converts the relation in the first set, to the relation in the second set. Whereas ordinals are useful for ordering the objects in a collection, they are distinct from cardinal numbers, which are useful for quantifying the number of objects in a collection. Although the distinction between ordinals and cardinals is not always apparent in finite sets (one can go from one to the other just by counting labels), different infinite ordinals can correspond to the same cardinal. Moreover, there may be sets which cannot be well ordered, and their cardinal numbers do not correspond to ordinal numbers. (For example, the existence of such sets follows from Zermelo-Fraenkel set theory with the negation of the axiom of choice.) Like other kinds of numbers, ordinals can be added, multiplied, and exponentiated, although none of these operations is commutative. Ordinals were introduced by Georg Cantor in 1883 in order to accommodate infinite sequences and classify derived sets, which he had previously introduced in 1872—while studying the uniqueness of trigonometric series. (en)
  • In de verzamelingenleer is een ordinaalgetal of ordinaal een generalisatie van het begrip natuurlijk getal. Net zoals met de natuurlijke getallen de objecten in een eindige collectie in een volgorde gezet kunnen worden door de objecten te tellen, zijn ordinaalgetallen ook een soort "labels" om objecten in volgorde te plaatsen. (nl)
  • Liczby porządkowe – specjalne rodzaje zbiorów dobrze uporządkowanych, które są kanonicznymi reprezentantami klas izomorficzności dobrych porządków. Liczby porządkowe stanowią „rdzeń” uniwersum modeli teorii mnogości. Zostały one wprowadzone przez Georga Cantora w 1897 roku (jako typy porządkowe dobrych porządków). (pl)
  • Na teoria dos conjuntos, um número ordinal, ou só ordinal, é um tipo de ordem de um conjunto bem-ordenado. Eles são usualmente identificados com conjuntos hereditariamente transitivos. Ordinais são uma extensão dos números naturais diferentes dos inteiros e dos cardinais. Como outros tipos de números, ordinais podem ser somados, multiplicados e exponenciados. Os ordinais foram apresentados por Georg Cantor em 1883 para acomodar sequências infinitas e para classificar conjuntos com certos tipos de estruturas de ordem neles. Ele os derivou por acidente, enquanto trabalhava num problema que envolvia séries trigonométricas. Os ordinais finitos (e cardinais finitos) são os números naturais: , já que quaisquer duas ordens de um conjunto finito são isomórficas de ordem. O menor ordinal infinito é o , que é identificado com o número cardinal . Entretanto, no caso transfinito, além de , ordinais elaboram uma distinção mais refinada do que os cardinais na contagem de suas informações de ordem. Enquanto há somente um cardinal infinito contável, que é o , há incontáveis ordinais infinitos contáveis, que são: Aqui, adição e multiplicação não são comutativas: em particular, é , ao contrário de , assim como é , enquanto não é. O conjunto de todos os ordinais contáveis constitui o primeiro ordinal incontável , que é identificado como cardinal (próximo cardinal após o). Cardinais bem-ordenados são identificados com seus ordinais iniciais, ou seja, o menor ordinal daquela cardinalidade. A cardinalidade de um ordinal é a associação de ordinais com cardinais. Em geral, cada ordinal é o tipo de ordem do conjunto de ordinais estritamente menores que o ordinal, o próprio α. Esta propriedade permite que todo ordinal seja representado como o conjunto de todos os ordinais menores que ele. Ordinais podem ser categorizados como: zero, ordinais sucessor e ordinais limite (de várias cofinalidades). Dada uma classe de ordinais, pode-se identificar um α-ésimo membro daquela classe, ou seja, pode-se indexá-los (contá-los). Tal classe é fechada e não limitada se sua função de indexação é contínua e nunca para. A foma normal de Cantor representa unicamente cada ordinal como um somatório finito de potências ordinais de . Entretanto, isto não pode forma a base da notação universal dos ordinais devido a tal representação auto referencial, como . Ordinais cada vez maiores podem ser definidos, mas eles ficam mais e mais difíceis de descrever. Qualquer número ordinal pode ser transformado em um espaço topológico por atribuí-lo com a topologia de ordem; esta topologia é discreta se e somente se o ordinal é um cardinal contável, ou seja, no máximo . Um subconjunto de é aberto na topologia de ordem se e somente se ou ele é cofinito ou ele não contém ω como elemento. (pt)
  • Ordinaltal är en typ av "tal" som mäter längden på välordningar och därmed är en generalisering av de naturliga talen. En del kallar dem mängdteorins ryggrad eftersom de är grundläggande inom mängdteorin. De används bland annat inom topologi, för att konstruera illustrativa exempel och motexempel på topologiska egenskaper. Om man accepterar urvalsaxiomet, så kan man identifiera kardinaltalen med en äkta delklass av ordinaltalen. När man reducerar de naturliga talen till mängder säger man att talet noll är den tomma mängden. Alla andra naturliga tal fås sedan genom att tillämpa successorfunktionen på föregående tal. Om denna procedur upprepas uppräkneligt oändligt många gånger har vi fått alla naturliga tal. Enligt infinitetsaxiomet kan vi fortsätta på samma sätt även med oändliga mängder, genom att bilda successorn av dessa. Då får vi alla oändliga ordinaltal. Det minsta oändliga ordinaltalet är ω. Successorn till detta är ω+1. Sedan följer ω+2, ω+3, ω+4 osv i all oändlighet. Det finns ingen som helst gräns för hur stora ordinaltalen kan bli. (sv)
  • В теории множеств порядковым числом, или ординалом (лат. ordinalis — порядковый) называется вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными (лат. trans — за, через + finitio — край, предел). Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции. Порядковые числа были введены Георгом Кантором в 1883 году как способ описания бесконечных последовательностей, а также классификации множеств, обладающих определённой упорядоченной структурой. Он случайно открыл порядковые числа, работая над задачей, связанной с тригонометрическими рядами. Множества и обладают одинаковой мощностью, если между ними можно установить биективное соответствие (то есть указать такую функцию , которая одновременно является инъективной и сюръективной: каждому из соответствует единственное из , а каждое из является образом единственного из ). Предположим, что на множествах и заданы частичные порядки и соответственно. Тогда частично упорядоченные множества и называются , если существует биективное отображение , при котором заданный порядок сохраняется. Иначе говоря, тогда и только тогда, когда . Любое вполне упорядоченное множество изоморфно с сохранением порядка по отношению к естественно упорядоченному множеству порядковых чисел, меньших некоторого определённого ординала (равного порядковому типу ). Конечные порядковые (и кардинальные) числа представляют собой числа натурального ряда: 0, 1, 2, …, поскольку два любых полных упорядочения конечного множества . Наименьшее бесконечно большое порядковое число отождествляется с кардинальным числом . Однако в случае трансфинитных чисел, больших , ординалы — по сравнению с кардинальными числами — позволяют выразить более тонкую классификацию множеств, основанную на информации об их упорядоченности. В то время как все счетные множества описываются одним кардинальным числом, равным , число счетных ординалов бесконечно велико и притом несчетно: В данном случае сложение и умножение не обладают свойством коммутативности: так, совпадает с , но отличается от ; аналогично , но не равно . Множество всех счетных ординалов образует , соответствующее кардинальному числу (следующее число после ). Вполне упорядоченные кардинальные числа отождествляются с их , то есть минимальными ординалами соответствующей мощности. Мощность порядкового числа задает между классами порядковых и кардинальных чисел соответствие по типу «многие к одному». Обычно произвольный ординал определяется как порядковый тип множества ординалов, строго меньших .Данное свойство позволяет представить любое порядковое число в виде множества ординалов, строго меньших его самого.Все порядковые числа можно разбить на три категории: нуль, следующее порядковое число и предельное порядковое число (последние различаются своей конфинальностью).Для заданного класса порядковых чисел можно указать его -й элемент — иначе говоря, элементы класса можно проиндексировать (сосчитать).Такой класс будет замкнутым и неограниченным при условии, что функция индексирования непрерывна и никогда не останавливается. Нормальная форма Кантора позволяет единственным образом представить любое порядковое число в виде конечной суммы порядковых степеней .Тем не менее, такая форма не может использоваться в качестве основы для универсальной системы обозначения порядковых чисел из-за наличия в ней автореферентных представлений: например, .Можно определять все более крупные порядковые числа, однако по мере роста их описание усложняется. Любое порядковое число можно представить в виде топологического пространства, приписав ему .Такая топология будет дискретной, тогда и только тогда, когда соответствующий ординал не превышает счётного кардинального числа, то есть меньше или равен .Подмножество будет открытым в порядковой топологии тогда и только тогда, когда оно является или не содержит в качестве элемента. (ru)
  • Порядкове число (трансфінітне число, ординал) — в теорії множин, узагальнення натурального числа відмінне від цілих чисел та кардинальних чисел. Введені Георгом Кантором в 1897 для класифікації цілком впорядкованих множин. Відіграють ключову роль в доведенні багатьох теорем теорії множин, особливо разом з пов'язаним з ними принципом трансфінітної індукції. (uk)
  • 數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 26547932 (xsd:integer)
dbo:wikiPageLength
  • 49270 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1026186310 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/o070180 (en)
dbp:title
  • Ordinal number (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • العدد الترتيبي هو عدد يُرتّب كل مدخل في مجموعة حسب موقعها ضمن المدخلات الأخرى. فعلى سبيل المثال: إذا كان س أكبر من ص، وص أكبر من ع، وع أكبر ن، فإن المقياس الترتيبي لهذه المجموعة {س، ص، ع، ن} هو: 1. * س 2. * ص 3. * ع 4. * ن ويمكن أن تستخدم الكلمات في الوصف أيضًا، كتصنيف المدخل على أنه "جيد" أو "مقبول" أو "سيئ". ومن الأمثلة على المقياس الترتيبي هو مقياس موس لقياس صلابة المواد. وفي الرياضيات فإن الأعداد الترتيبية تعتبر امتدادًا للأعداد الطبيعية وذلك لأخذ المتتاليات اللانهائية، والتي وضعها جورج كانتور، بعين الاعتبار. (ar)
  • V teorii množin je ordinální číslo zobecněním myšlenky pořadí prvku v uspořádané množině, jež je v přirozeném jazyce vyjádřena řadovou číslovkou jako „první“ či „pátý“. Pojem ordinálního čísla myšlenku zobecňuje i na nekonečné uspořádané množiny. (cs)
  • In matematica, i numeri ordinali costituiscono un'estensione dei numeri naturali che tiene conto anche di successioni infinite, introdotta da Georg Cantor nel 1897. (it)
  • 数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。 (ja)
  • In de verzamelingenleer is een ordinaalgetal of ordinaal een generalisatie van het begrip natuurlijk getal. Net zoals met de natuurlijke getallen de objecten in een eindige collectie in een volgorde gezet kunnen worden door de objecten te tellen, zijn ordinaalgetallen ook een soort "labels" om objecten in volgorde te plaatsen. (nl)
  • Liczby porządkowe – specjalne rodzaje zbiorów dobrze uporządkowanych, które są kanonicznymi reprezentantami klas izomorficzności dobrych porządków. Liczby porządkowe stanowią „rdzeń” uniwersum modeli teorii mnogości. Zostały one wprowadzone przez Georga Cantora w 1897 roku (jako typy porządkowe dobrych porządków). (pl)
  • Порядкове число (трансфінітне число, ординал) — в теорії множин, узагальнення натурального числа відмінне від цілих чисел та кардинальних чисел. Введені Георгом Кантором в 1897 для класифікації цілком впорядкованих множин. Відіграють ключову роль в доведенні багатьох теорем теорії множин, особливо разом з пов'язаним з ними принципом трансфінітної індукції. (uk)
  • 數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。 (zh)
  • Els nombres ordinals, o senzillament ordinals, són nombres usats per a denotar la posició en una successió ordenada: primer, segon, tercer, quart, etc. El matemàtic Georg Cantor va mostrar el 1897 com estendre aquest concepte més enllà dels nombres naturals fins a l'infinit, i com fer aritmètica amb aquests ordinals transfinits. Hom pot (i és usual de fer) definir el nombre natural n com el conjunt de tots els nombres naturals menors: (ca)
  • En teoría de conjuntos, un número ordinal, o simplemente ordinal, es un representante del tipo de orden de un conjunto bien ordenado. De este modo, los ordinales clasifican todos los posibles conjuntos bien ordenados. Fueron introducidos por Georg Cantor en 1897. Los ordinales finitos (así como los cardinales finitos) son los números naturales 0, 1, 2,..., puesto que dos órdenes totales de un conjunto finito son . Al primer ordinal infinito se le denota ω. que se corresponden con distintas maneras de ordenar el conjunto de los números naturales. (es)
  • Zenbaki ordinalak zenbakien arteko ordena bat adierazteko erabiltzen direnak dira. Hauek adierazteko orduan euskal literaturan eta idazleen artean erabilera eta ohitura anitz izan direnez, batasuna egiteko Euskaltzaindiak beti puntu bat jartzea gomendatzen du ordinala adierazteko. Alegia, garren esango litzatekeen tokian puntua jarri behar da sistematikoki, inolako bereizketarik egin gabe erromatar zenbakien eta beste sistemetako zenbakien artean. Horrenbestez, zenbakien ondoren puntua erabiliko da eta garren zenbakiak letraz idazten direneko bakarrik utziko da. Ordinala adierazteko marka horri artikulua eta kasu marka gaineratuko zaizkio, hala beharko balitz, edozein sintagmarekin gertatzen den bezala: (eu)
  • In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a (possibly infinite) collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. The basic idea of ordinal numbers is to generalize this process to possibly infinite collections and to provide a "label" for each step in the process. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order. (en)
  • En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession. (fr)
  • Bilangan ordinal dalam teori himpunan adalah jenis tatanan dari suatu himpunan yang teratur baik. Biasanya diidentifikasi dengan himpunan transitif hereditari. Bilangan ordinal merupakan perluasan bilangan asli, berbeda dengan integer dan dengan bilangan kardinal. Sebagaimana jenis bilangan lain, bilangan ordinal dapat dijumlahkan, dikalikan, dan dipangkatkan. Bilangan ordinal diperkenalkan oleh Georg Cantor pada tahun 1883 untuk mengakomodasi urutan dan untuk menggolongkan himpunan turunan, yang sebelumnya telah disampaikannya pada tahun 1872 ketika mempelajari keunikan . Contoh: (in)
  • В теории множеств порядковым числом, или ординалом (лат. ordinalis — порядковый) называется вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными (лат. trans — за, через + finitio — край, предел). Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции. (ru)
  • Na teoria dos conjuntos, um número ordinal, ou só ordinal, é um tipo de ordem de um conjunto bem-ordenado. Eles são usualmente identificados com conjuntos hereditariamente transitivos. Ordinais são uma extensão dos números naturais diferentes dos inteiros e dos cardinais. Como outros tipos de números, ordinais podem ser somados, multiplicados e exponenciados. (pt)
  • Ordinaltal är en typ av "tal" som mäter längden på välordningar och därmed är en generalisering av de naturliga talen. En del kallar dem mängdteorins ryggrad eftersom de är grundläggande inom mängdteorin. De används bland annat inom topologi, för att konstruera illustrativa exempel och motexempel på topologiska egenskaper. Om man accepterar urvalsaxiomet, så kan man identifiera kardinaltalen med en äkta delklass av ordinaltalen. (sv)
rdfs:label
  • عدد ترتيبي (ar)
  • Nombre ordinal (ca)
  • Ordinální číslo (cs)
  • Ordinalzahl (de)
  • Ordinal number (en)
  • Ordonombro (eo)
  • Zenbaki ordinal (eu)
  • Número ordinal (teoría de conjuntos) (es)
  • Nombre ordinal (fr)
  • Bilangan ordinal (in)
  • 順序数 (ja)
  • Numero ordinale (teoria degli insiemi) (it)
  • 순서수 (ko)
  • Ordinaalgetal (nl)
  • Liczby porządkowe (pl)
  • Número ordinal (pt)
  • Ordinaltal (sv)
  • Порядковое число (ru)
  • 序数 (zh)
  • Порядкове число (uk)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License