In set theory, an honest leftmost branch of a tree T on ω × γ is a branch (maximal chain) ƒ ∈ [T] such that for each branch g ∈ [T], one has ∀ n ∈ ω : ƒ(n) ≤ g(n). Here, [T] denotes the set of branches of maximal length of T, ω is the smallest infinite ordinal (represented by the natural numbers N), and γ is some other ordinal.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |