In mathematical logic and set theory, an ordinal notation is a partial function mapping the set of all finite sequences of symbols, themselves members of a finite alphabet, to a countable set of ordinals. A Gödel numbering is a function mapping the set of well-formed formulae (a finite sequence of symbols on which the ordinal notation function is defined) of some formal language to the natural numbers. This associates each well-formed formula with a unique natural number, called its Gödel number. If a Gödel numbering is fixed, then the subset relation on the ordinals induces an ordering on well-formed formulae which in turn induces a well-ordering on the subset of natural numbers. A recursive ordinal notation must satisfy the following two additional properties:
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of |
|
is foaf:primaryTopic of |