An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality (a bijection can be set up between the two by simply sending the last element of the successor to 0, 0 to 1, etc., and fixing ω and all the elements above; in the style of Hilbert's Hotel Infinity). Using the von Neumann cardinal assignment and the axiom of choice (AC), this successor operation is easy to define: for a cardinal number κ we have

Property Value
dbo:abstract
  • In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality (a bijection can be set up between the two by simply sending the last element of the successor to 0, 0 to 1, etc., and fixing ω and all the elements above; in the style of Hilbert's Hotel Infinity). Using the von Neumann cardinal assignment and the axiom of choice (AC), this successor operation is easy to define: for a cardinal number κ we have , where ON is the class of ordinals. That is, the successor cardinal is the cardinality of the least ordinal into which a set of the given cardinality can be mapped one-to-one, but which cannot be mapped one-to-one back into that set. That the set above is nonempty follows from Hartogs' theorem, which says that for any well-orderable cardinal, a larger such cardinal is constructible. The minimum actually exists because the ordinals are well-ordered. It is therefore immediate that there is no cardinal number in between κ and κ+. A successor cardinal is a cardinal that is κ+ for some cardinal κ. In the infinite case, the successor operation skips over many ordinal numbers; in fact, every infinite cardinal is a limit ordinal. Therefore, the successor operation on cardinals gains a lot of power in the infinite case (relative the ordinal successorship operation), and consequently the cardinal numbers are a very "sparse" subclass of the ordinals. We define the sequence of alephs (via the axiom of replacement) via this operation, through all the ordinal numbers as follows: and for λ an infinite limit ordinal, If β is a successor ordinal, then is a successor cardinal. Cardinals that are not successor cardinals are called limit cardinals; and by the above definition, if λ is a limit ordinal, then is a limit cardinal. The standard definition above is restricted to the case when the cardinal can be well-ordered, i.e. is finite or an aleph. Without the axiom of choice, there are cardinals that cannot be well-ordered. Some mathematicians have defined the successor of such a cardinal as the cardinality of the least ordinal that cannot be mapped one-to-one into a set of the given cardinality. That is: which is the Hartogs number of κ. (en)
  • Następnik liczby kardynalnej – operacja zdefiniowana dla liczb kardynalnych, podobnie jak następnik liczby porządkowe, w taki sposób, że pomiędzy daną liczbą kardynalną a jej następnikiem nie ma innych liczb kardynalnych. Operację następnika dla liczb kardynalnych definiuje się następująco: gdzie oznacza klasę wszystkich liczb porządkowych. Można łatwo udowodnić, że jest liczbą porządkową i jest najmniejsza spośród liczb porządkowych o mocy większej od Następnik liczby nazywamy (gdzie symbol oznacza dodawanie liczb porządkowych). Na przykład i Uwaga: Każda liczba kardynalna jest także liczbą porządkową, więc ma dwa następniki – jeden w sensie liczb kardynalnych, a drugi w sensie liczb porządkowych. Na przykład następnik liczby kardynalnej to (= następna liczba kardynalna), a następnik liczby porządkowej to (= następna liczba porządkowa). Liczba kardynalna, która nie jest następnikiem żadnej innej liczby kardynalnej, nazywana jest . Na przykład jest pierwszą nieprzeliczalną graniczną liczbą kardynalną. (pl)
  • Na teoria de números cardinais, podemos definir uma operação de sucessor semelhante à dos números ordinais. Isto coincide com a operação de sucessor ordinal para cardinais finitos, mas no caso de infinitos divergem porque cada ordinal infinito e seu sucessor tem a mesma cardinalidade (uma bijeção pode ser configurado entre os dois simplesmente enviando o último elemento do sucessor a 0, 0 a 1, etc, e fixa ω e todos os elementos acima, no estilo da infinitude do hotel de Hilbert). Usando a atribuição cardinal de von Neumann e o axioma da escolha, esta operação de sucessor é fácil de definir: para um número cardinal κ temos: , onde ON é a classe dos ordinais. Isto é, o cardinal sucessor é a cardinalidade do menor ordinal no qual um conjunto da cardinalidade dada pode ser mapeado um-para-um, mas que não pode ser mapeado um-para-um de volta para o conjunto. (pt)
dbo:wikiPageID
  • 375210 (xsd:integer)
dbo:wikiPageLength
  • 3683 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1102794153 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality (a bijection can be set up between the two by simply sending the last element of the successor to 0, 0 to 1, etc., and fixing ω and all the elements above; in the style of Hilbert's Hotel Infinity). Using the von Neumann cardinal assignment and the axiom of choice (AC), this successor operation is easy to define: for a cardinal number κ we have (en)
  • Następnik liczby kardynalnej – operacja zdefiniowana dla liczb kardynalnych, podobnie jak następnik liczby porządkowe, w taki sposób, że pomiędzy daną liczbą kardynalną a jej następnikiem nie ma innych liczb kardynalnych. Operację następnika dla liczb kardynalnych definiuje się następująco: gdzie oznacza klasę wszystkich liczb porządkowych. Można łatwo udowodnić, że jest liczbą porządkową i jest najmniejsza spośród liczb porządkowych o mocy większej od Następnik liczby nazywamy (gdzie symbol oznacza dodawanie liczb porządkowych). Na przykład i (pl)
  • Na teoria de números cardinais, podemos definir uma operação de sucessor semelhante à dos números ordinais. Isto coincide com a operação de sucessor ordinal para cardinais finitos, mas no caso de infinitos divergem porque cada ordinal infinito e seu sucessor tem a mesma cardinalidade (uma bijeção pode ser configurado entre os dois simplesmente enviando o último elemento do sucessor a 0, 0 a 1, etc, e fixa ω e todos os elementos acima, no estilo da infinitude do hotel de Hilbert). Usando a atribuição cardinal de von Neumann e o axioma da escolha, esta operação de sucessor é fácil de definir: para um número cardinal κ temos: (pt)
rdfs:label
  • Nachfolger-Kardinalzahl (de)
  • Następnik liczby kardynalnej (pl)
  • Successor cardinal (en)
  • Sucessor cardinal (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License