An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than .

Property Value
dbo:abstract
  • Els nombres ordinals, o senzillament ordinals, són nombres usats per a denotar la posició en una successió ordenada: primer, segon, tercer, quart, etc. El matemàtic Georg Cantor va mostrar el 1897 com estendre aquest concepte més enllà dels nombres naturals fins a l'infinit, i com fer aritmètica amb aquests ordinals transfinits. Hom pot (i és usual de fer) definir el nombre natural n com el conjunt de tots els nombres naturals menors: 0 = {} (conjunt buit) 1 = {0} = { { } } 2 = {0,1} = { {}, { {} } } 3 = {0,1,2} = {{}, { {} }, { {}, { {}}}} 4 = {0,1,2,3} = { {}, { {} }, { {}, { {} } }, {{}, { {} }, { {}, { {}}}} } etc. Vist d'aquesta manera, cada nombre natural és un conjunt ben ordenat: el conjunt 4, per exemple, té elements 0, 1, 2, 3, que són ordenats naturalment com a (ben ordenats). Un nombre natural és menor que un altre nombre, si i només si, és element de l'altre. (ca)
  • V teorii množin je ordinální číslo zobecněním myšlenky pořadí prvku v uspořádané množině, jež je v přirozeném jazyce vyjádřena řadovou číslovkou jako „první“ či „pátý“. Pojem ordinálního čísla myšlenku zobecňuje i na nekonečné uspořádané množiny. (cs)
  • العدد الترتيبي هو عدد يُرتّب كل مدخل في مجموعة حسب موقعها ضمن المدخلات الأخرى. فعلى سبيل المثال: إذا كان س أكبر من ص، وص أكبر من ع، وع أكبر ن، فإن المقياس الترتيبي لهذه المجموعة {س، ص، ع، ن} هو: 1. * س 2. * ص 3. * ع 4. * ن ويمكن أن تستخدم الكلمات في الوصف أيضًا، كتصنيف المدخل على أنه «جيد» أو «مقبول» أو «سيئ». ومن الأمثلة على المقياس الترتيبي هو مقياس موس لقياس صلابة المواد. وفي الرياضيات فإن الأعداد الترتيبية تعتبر امتدادًا للأعداد الطبيعية وذلك لأخذ المتتاليات اللانهائية، والتي وضعها جورج كانتور، بعين الاعتبار. (ar)
  • En matematika aroteorio, la ordonombroj estas nombrosistemo kiu vastigas la sistemon de naturaj nombroj al senfine grandaj nombroj. Notindas, ke ekzistas du malsamaj vastigoj de la naturaj nombroj al senfine grandaj nombroj: Se oni rigardas naturajn nombrojn en ilia funkcio kiel mezuriloj por grandeco de finhavaj aroj, tiam la vastigo al senfinaj aroj donas la kvantonombrojn. Se, aliflanke, oni rigardas la naturajn nombrojn en ilia funkcio kiel indikiloj de pozicioj en iu finhava ordigita aro, tiam vastigo al senfinaj aroj donas la ordonombrojn. Por povi senchave paroli pri pozicioj en senfina ordigita aro, oni tamen devas limigi sin al la bone ordigitaj aroj, kiuj estas la ordigitaj aroj, ĉe kiuj ĉiu subaro havas plej malgrandan elementon. Oni povas rigardi la ordonombrojn kiel de bone ordigitaj aroj. Origine oni identigis la ordotipojn kun la ekvivalentklasoj de ordigitaj aroj, kun izomorfieco kiel ekvivalento-rilato. Ĉar en la moderna aksioma aroteorio tiaj ekvivalentklasoj ne povas esti aroj, oni nuntempe preferas identigi la ordonombrojn kun la herede . Kiel por aliaj nombrospecoj, por ordonombroj estas difinitaj operacioj de adicio, obligo kaj potencigo. Subtraho kaj divido ne estas difineblaj por la ordonombroj. Unue la koncepton de ordonombroj enkondukis Georg Cantor en 1897 por priskribi senfinajn vicojn kaj klasigi arojn laŭ . Pli detalajn priskribojn de la sistemo donis Levy (1979) kaj Sacks (2003). La finhavaj ordonombroj (same kiel la finhavaj kvantonombroj) estas naturaj nombroj (0, 1, 2, …), ĉar ĉiuj du ordoj de finhava aro estas orde izomorfiaj. La plej malgranda senfina ordonombro ω estas identa kun plej malgranda senfina kvantonombro . Tamen, senfinaj ordonombroj post ω havas subtilan distingon, kiun kvantonombroj ne havas. Ekzemple, dum ekzistas nur unu senfina kvantonombro , estas senfine multaj nombreblaj senfinaj ordonombroj: ω, ω + 1, ω + 2, …, ω·2, ω·2 + 1, …, ω2, …, ω3, …, ωω, …, ωωω, …, ε0, …. Malsimile al kvantonombroj kaj aliaj nombraj sistemoj, en ordonombroj adicio kaj obligo ne estas komutecaj. Ekzemple, 1 + ω estas ω, sed ne ω + 1, kaj, simile, 2·ω estas ω, sed ne ω·2. Povo de aro de ĉiuj nombreblaj ordonombroj estas la unua nenombrebla ordonombro ω1, kiu estas identa kun kvantonombro (la sekva post ). Bone ordigitaj kvantonombroj estas identigataj kun komencaj ordonombroj, t.e. la plej malgrandaj ordonombroj kun tiu kvantonombro. La kvantonombro de ordonombro difinas ne-disĵetan surĵeton de la ordonombroj al la kvantonombroj. Ĝenerale, ĉiu ordonombro α estas la ordotipo de la aro de ordonombroj rigore malpli grandaj ol α mem. Tiel ĉiu ordonombro povas esti reprezentita per aro de ĉiuj ordonombroj malpli grandaj ol ĝi mem. Oni povas klasigi la ordonombrojn jene: nulo, postanto-nombroj kaj limaj ordonombroj (de variaj ). Se estas donita klaso de ordonombroj, oni povas difini la α-an membron de tiu ĉi klaso, t.e. oni povas numeri ilin. La klaso estas fermita kaj nebarita se ĝia indica funkcio estas kontinua kaj ne finiĝas. La Cantor-norma formo de ordonombro estas unika reprezentaĵo de iu ordonombro kiel finhava sumo de ordonombraj potencoj de ω. Tamen, tiu ĉi notacio povas esti nekonsista pro tiaj memreferencaj reprezentaĵoj kiel . Pli kaj pli grandaj ordonombroj povas esti difinitaj kaj ili iĝas pli kaj pli malfacile priskribeblaj. Ĉiu ordonombro povas esti transformita al topologia spaco per . Tiu topologio estu se kaj nur se la ordonombro estas identa kun nombrebla kardinalo, t.e. ne pli granda ol ω. Subaro ω + 1 estas malfermita en la orda topologio se kaj nur se ĝi estas kunfinia aŭ ne enhavas na ω. (eo)
  • Ordinalzahlen sind mathematische Objekte, die das Konzept der Position oder des Index eines Elementes in einer Folge auf Wohlordnungen über beliebigen Mengen verallgemeinern. Positionen in Folgen werden als natürliche Zahlen aufgefasst (sprachlich durch die Ordinalia erstes, zweites, drittes, … Element ausgedrückt), welche die endlichen Ordinalzahlen bilden. Entscheidend bei dieser Verallgemeinerung ist, dass wie bei Folgen eine kleinste Position (die Ordinalzahl Null) existiert und jedes Element (mit Ausnahme eines eventuell vorhandenen letzten Elements) einen eindeutigen Nachfolger hat. Da totale Anordnungen, die diese Bedingungen erfüllen, immer noch sehr verschiedene Strukturen haben können, führt man als zusätzliche Bedingung ein, dass es zu jeder nichtleeren Teilmenge von Indizes einen minimalen Index geben soll, und gelangt so zu Wohlordnungen. Ordinalzahlen erlauben die Verallgemeinerung der auf Folgen beschränkten Beweisverfahren der vollständigen Induktion auf beliebig große Mengen oder auch echte Klassen, sofern sie sich wohlordnen lassen, mittels des Verfahrens der transfiniten Induktion. Die Beschreibung der Größe einer Menge, naiv gesprochen der Anzahl ihrer Elemente, führt im Gegensatz dazu zu dem Begriff Kardinalzahl (eins, zwei, drei, …). Georg Cantor hatte die Idee, wie man die beiden Konzepte – Zahl als Größe und Zahl als Index – innerhalb der Mengenlehre auf unendliche Mengen verallgemeinern kann; denn während sie für endliche Mengen übereinstimmen, muss man sie für unendliche Mengen unterscheiden. Kardinalzahlen werden dabei als spezielle Ordinalzahlen definiert. Die Gesamtheit der Ordinalzahlen, die man meistens mit oder bezeichnet, bildet in der modernen Mengenlehre – genauso wie die Gesamtheit der Kardinalzahlen – keine Menge, sondern eine echte Klasse. Für viele dieser Überlegungen (wie etwa transfinite Induktion und die Definition von Kardinalzahlen als Ordinalzahlen) ist das Auswahlaxiom bzw. der dazu äquivalente Wohlordnungssatz vonnöten. Ordinalzahlen sind von besonderer Bedeutung für die Mengenlehre, in anderen Gebieten der Mathematik werden auch andere verallgemeinerte Indizierungen verwendet, etwa in Netzen und Filtern, die von besonderer Bedeutung für die Topologie sind und über anderen Ordnungen als Wohlordnungen operieren. Insbesondere verallgemeinern diese verallgemeinerten Indizierungen im Gegensatz zu Ordinalzahlen das für Folgen wichtige Konzept der Konvergenz. (de)
  • Zenbaki ordinalak zenbakien arteko ordena bat adierazteko erabiltzen direnak dira. Hauek adierazteko orduan euskal literaturan eta idazleen artean erabilera eta ohitura anitz izan direnez, batasuna egiteko Euskaltzaindiak beti puntu bat jartzea gomendatzen du ordinala adierazteko. Alegia, garren esango litzatekeen tokian puntua jarri behar da sistematikoki, inolako bereizketarik egin gabe erromatar zenbakien eta beste sistemetako zenbakien artean. Horrenbestez, zenbakien ondoren puntua erabiliko da eta garren zenbakiak letraz idazten direneko bakarrik utziko da. Ordinala adierazteko marka horri artikulua eta kasu marka gaineratuko zaizkio, hala beharko balitz, edozein sintagmarekin gertatzen den bezala: Irakurtzeko orduan "hogeigarren mendea", "hamargarren mendea", e.a. irakurriko dira. Azkeneko adibideak, berriz, honela: "hamazazpigarren, hemezortzigarren eta hemeretzigarren mendeetan", "hamazazpi, hemezortzi eta hemeretzigarren mendeetan", "Juan Karlos lehenak esan duenez", e.a. Zenbait kasutan, hala ere, ordinal horiek ez dira beti benetako ordinal gisa erabiltzen eta ahoskatzeko orduan ez da "garren" erabiltzen: (eu)
  • En teoría de conjuntos, un número ordinal, o simplemente ordinal, es un representante del tipo de orden de un conjunto bien ordenado. De este modo, los ordinales clasifican todos los posibles conjuntos bien ordenados. Fueron introducidos por Georg Cantor en 1897. Los ordinales finitos (así como los cardinales finitos) son los números naturales 0, 1, 2,..., puesto que dos órdenes totales de un conjunto finito son . Al primer ordinal infinito se le denota ω. En el caso infinito, los ordinales ofrecen una distinción más fina que los cardinales, que sólo representan la cantidad de elementos. Así, mientras sólo existe un cardinal infinito numerable ℵ0, existen infinitos ordinales infinitos y numerables: que se corresponden con distintas maneras de ordenar el conjunto de los números naturales. (es)
  • En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession. Georg Cantor a été amené (lors de ses travaux sur les séries trigonométriques) à nommer de même le concept qu'il avait introduit à cette occasion pour caractériser le type d'ordre des ensembles qu'il rencontrait, de façon plus précise qu'en les mesurant par leur cardinalité (leur « nombre d'éléments »). Les ordinaux finis peuvent en fait être identifiés aux entiers naturels qui s'identifient eux-mêmes aux cardinaux finis, mais, dans le cas des ensembles infinis, ce n'est plus vrai : tous les cardinaux sont encore identifiables à des ordinaux, mais la réciproque est fausse. (fr)
  • In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to an initial segment of the other. So ordinal numbers exist and are essentially unique. Ordinal numbers are distinct from cardinal numbers, which measure the size of sets. Although the distinction between ordinals and cardinals is not always apparent on finite sets (one can go from one to the other just by counting labels), they are very different in the infinite case, where different infinite ordinals can correspond to sets having the same cardinal. Like other kinds of numbers, ordinals can be added, multiplied, and exponentiated, although none of these operations are commutative. Ordinals were introduced by Georg Cantor in 1883 in order to accommodate infinite sequences and classify derived sets, which he had previously introduced in 1872 while studying the uniqueness of trigonometric series. (en)
  • Bilangan ordinal dalam teori himpunan adalah jenis tatanan dari suatu himpunan yang teratur baik. Biasanya diidentifikasi dengan himpunan transitif hereditari. Bilangan ordinal merupakan perluasan bilangan asli, berbeda dengan integer dan dengan bilangan kardinal. Sebagaimana jenis bilangan lain, bilangan ordinal dapat dijumlahkan, dikalikan, dan dipangkatkan. Bilangan ordinal diperkenalkan oleh Georg Cantor pada tahun 1883 untuk mengakomodasi urutan dan untuk menggolongkan , yang sebelumnya telah disampaikannya pada tahun 1872 ketika mempelajari keunikan . Contoh: * Himpunan bilangan ordinal kurang dari 3 adalah 3 = (0, 1, 2}, bilangan ordinal terkecil tidak kurang dari 3. * Himpunan bilangan ordinal terhingga adalah tak terhingga, bilangan ordinal tak terhingga terkecil: ω. * Himpunan bilangan ordinal terhitung adalah tak terhitung, bilangan ordinal tak terhitung terkecil: ω1. (in)
  • In matematica, i numeri ordinali costituiscono un'estensione dei numeri naturali che tiene conto anche di successioni infinite, introdotta da Georg Cantor nel 1897. (it)
  • 数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。 (ja)
  • In de verzamelingenleer is een ordinaalgetal of ordinaal een generalisatie van het begrip natuurlijk getal. Net zoals met de natuurlijke getallen de elementen in een eindige verzameling in een volgorde gezet kunnen worden door de elementen te tellen, zijn ordinaalgetallen ook een soort getallen om objecten in een gegeven volgorde te plaatsen. (nl)
  • 집합론에서 순서수(順序數, 영어: ordinal) 또는 서수(序數)는 정렬 전순서 집합들의 "길이"를 측정하는 수의 일종이다. 자연수를 확장하며, 자연수들의 정렬 전순서 집합과 같은 무한 정렬 전순서 집합들의 크기를 측정하는 무한 순서수들이 존재한다. 자연수는 집합의 크기를 표현하기 위해 사용되기도 하고, 열에서 원소의 위치를 나타내기 위해 사용되기도 한다. 이 두 쓰임새는 유한 집합의 경우 크게 다르지 않으나, 무한 집합의 경우에는 이 구분이 중요해진다. 전자를 확장한 것이 기수이고, 후자를 확장한 것이 순서수이다. 기수는 아무런 구조도 갖지 않는 집합에 대해서도 부여할 수 있지만, 순서수는 정렬 전순서 집합에 대해서만 정의되며, 정렬 전순서의 개념과 순서수의 개념에는 매우 밀접한 관련이 있다. 간단히 말해, 정렬 전순서란 무한히 감소하는 수열이 존재하지 않는 전순서를 말한다. (물론 무한히 증가하는 수열은 존재할 수 있다.) 임의의 전순서 집합에서 최소 원소를 0이라 하고 그 다음 원소를 1이라 하는 식으로 그 집합의 원소들을 순서수를 이용해 순서매길 수 있으며, 이 집합의 "길이"를 여기에서 집합의 원소에 대응되지 않는 가장 작은 순서수로 정의할 수 있다. 이 "길이"를 집합의 순서형이라고 한다. (ko)
  • Liczby porządkowe – specjalne rodzaje zbiorów dobrze uporządkowanych, które są kanonicznymi reprezentantami klas izomorficzności dobrych porządków. Są też definiowane jako typy porządkowe dobrych porządków. Liczby porządkowe stanowią „rdzeń” uniwersum modeli teorii mnogości. Zostały one wprowadzone przez Georga Cantora w 1897 roku (jako typy porządkowe dobrych porządków). (pl)
  • Ordinaltal är en typ av "tal" som mäter längden på välordningar och därmed är en generalisering av de naturliga talen. En del kallar dem mängdteorins ryggrad eftersom de är grundläggande inom mängdteorin. De används bland annat inom topologi, för att konstruera illustrativa exempel och motexempel på topologiska egenskaper. Om man accepterar urvalsaxiomet, så kan man identifiera kardinaltalen med en äkta delklass av ordinaltalen. När man reducerar de naturliga talen till mängder säger man att talet noll är den tomma mängden. Alla andra naturliga tal fås sedan genom att tillämpa successorfunktionen på föregående tal. Om denna procedur upprepas uppräkneligt oändligt många gånger har vi fått alla naturliga tal. Enligt infinitetsaxiomet kan vi fortsätta på samma sätt även med oändliga mängder, genom att bilda successorn av dessa. Då får vi alla oändliga ordinaltal. Det minsta oändliga ordinaltalet är ω. Successorn till detta är ω+1. Sedan följer ω+2, ω+3, ω+4 osv i all oändlighet. Det finns ingen som helst gräns för hur stora ordinaltalen kan bli. (sv)
  • Na teoria dos conjuntos, um número ordinal, ou só ordinal, é um tipo de ordem de um conjunto bem-ordenado. Eles são usualmente identificados com conjuntos hereditariamente transitivos. Ordinais são uma extensão dos números naturais diferentes dos inteiros e dos cardinais. Como outros tipos de números, ordinais podem ser somados, multiplicados e exponenciados. Os ordinais foram apresentados por Georg Cantor em 1883 para acomodar sequências infinitas e para classificar conjuntos com certos tipos de estruturas de ordem neles. Ele os derivou por acidente, enquanto trabalhava num problema que envolvia séries trigonométricas. Os ordinais finitos (e cardinais finitos) são os números naturais: , já que quaisquer duas ordens de um conjunto finito são isomórficas de ordem. O menor ordinal infinito é o , que é identificado com o número cardinal . Entretanto, no caso transfinito, além de , ordinais elaboram uma distinção mais refinada do que os cardinais na contagem de suas informações de ordem. Enquanto há somente um cardinal infinito contável, que é o , há incontáveis ordinais infinitos contáveis, que são: Aqui, adição e multiplicação não são comutativas: em particular, é , ao contrário de , assim como é , enquanto não é. O conjunto de todos os ordinais contáveis constitui o primeiro ordinal incontável , que é identificado como cardinal (próximo cardinal após o). Cardinais bem-ordenados são identificados com seus ordinais iniciais, ou seja, o menor ordinal daquela cardinalidade. A cardinalidade de um ordinal é a associação de ordinais com cardinais. Em geral, cada ordinal é o tipo de ordem do conjunto de ordinais estritamente menores que o ordinal, o próprio α. Esta propriedade permite que todo ordinal seja representado como o conjunto de todos os ordinais menores que ele. Ordinais podem ser categorizados como: zero, ordinais sucessor e ordinais limite (de várias cofinalidades). Dada uma classe de ordinais, pode-se identificar um α-ésimo membro daquela classe, ou seja, pode-se indexá-los (contá-los). Tal classe é fechada e não limitada se sua função de indexação é contínua e nunca para. A foma normal de Cantor representa unicamente cada ordinal como um somatório finito de potências ordinais de . Entretanto, isto não pode forma a base da notação universal dos ordinais devido a tal representação auto referencial, como . Ordinais cada vez maiores podem ser definidos, mas eles ficam mais e mais difíceis de descrever. Qualquer número ordinal pode ser transformado em um espaço topológico por atribuí-lo com a topologia de ordem; esta topologia é discreta se e somente se o ordinal é um cardinal contável, ou seja, no máximo . Um subconjunto de é aberto na topologia de ordem se e somente se ou ele é cofinito ou ele não contém ω como elemento. (pt)
  • Порядкове число (трансфінітне число, ординал) — в теорії множин, узагальнення натурального числа відмінне від цілих чисел та кардинальних чисел. Введені Георгом Кантором в 1897 для класифікації цілком впорядкованих множин. Відіграють ключову роль в доведенні багатьох теорем теорії множин, особливо разом з пов'язаним з ними принципом трансфінітної індукції. (uk)
  • В теории множеств порядковым числом, или ординалом (лат. ordinalis — порядковый) называется вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными (лат. trans — за, через + finitio — край, предел). Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции. Порядковые числа были введены Георгом Кантором в 1883 году как способ описания бесконечных последовательностей, а также классификации множеств, обладающих определённой упорядоченной структурой. Он случайно открыл порядковые числа, работая над задачей, связанной с тригонометрическими рядами. Множества и обладают одинаковой мощностью, если между ними можно установить биективное соответствие (то есть указать такую функцию , которая одновременно является инъективной и сюръективной: каждому из соответствует единственное из , а каждое из является образом единственного из ). Предположим, что на множествах и заданы частичные порядки и соответственно. Тогда частично упорядоченные множества и называются , если существует биективное отображение , при котором заданный порядок сохраняется. Иначе говоря, тогда и только тогда, когда . Любое вполне упорядоченное множество изоморфно с сохранением порядка по отношению к естественно упорядоченному множеству порядковых чисел, меньших некоторого определённого ординала (равного порядковому типу ). Конечные порядковые (и кардинальные) числа представляют собой числа натурального ряда: 0, 1, 2, …, поскольку два любых полных упорядочения конечного множества . Наименьшее бесконечно большое порядковое число отождествляется с кардинальным числом . Однако в случае трансфинитных чисел, больших , ординалы — по сравнению с кардинальными числами — позволяют выразить более тонкую классификацию множеств, основанную на информации об их упорядоченности. В то время как все счетные множества описываются одним кардинальным числом, равным , число счетных ординалов бесконечно велико и притом несчетно: В данном случае сложение и умножение не обладают свойством коммутативности: так, совпадает с , но отличается от ; аналогично , но не равно . Множество всех счетных ординалов образует , соответствующее кардинальному числу (следующее число после ). Вполне упорядоченные кардинальные числа отождествляются с их , то есть минимальными ординалами соответствующей мощности. Мощность порядкового числа задает между классами порядковых и кардинальных чисел соответствие по типу «многие к одному». Обычно произвольный ординал определяется как порядковый тип множества ординалов, строго меньших .Данное свойство позволяет представить любое порядковое число в виде множества ординалов, строго меньших его самого.Все порядковые числа можно разбить на три категории: нуль, следующее порядковое число и предельное порядковое число (последние различаются своей конфинальностью).Для заданного класса порядковых чисел можно указать его -й элемент — иначе говоря, элементы класса можно проиндексировать (сосчитать).Такой класс будет замкнутым и неограниченным при условии, что функция индексирования непрерывна и никогда не останавливается. Нормальная форма Кантора позволяет единственным образом представить любое порядковое число в виде конечной суммы порядковых степеней .Тем не менее, такая форма не может использоваться в качестве основы для универсальной системы обозначения порядковых чисел из-за наличия в ней автореферентных представлений: например, . Можно определять все более крупные порядковые числа, однако по мере роста их описание усложняется. Любое порядковое число можно представить в виде топологического пространства, приписав ему . Такая топология будет дискретной, тогда и только тогда, когда соответствующий ординал не превышает счётного кардинального числа, то есть меньше или равен .Подмножество будет открытым в порядковой топологии тогда и только тогда, когда оно является или не содержит в качестве элемента. (ru)
  • 數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 26547932 (xsd:integer)
dbo:wikiPageLength
  • 47528 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124375315 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/o070180 (en)
dbp:title
  • Ordinal number (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • V teorii množin je ordinální číslo zobecněním myšlenky pořadí prvku v uspořádané množině, jež je v přirozeném jazyce vyjádřena řadovou číslovkou jako „první“ či „pátý“. Pojem ordinálního čísla myšlenku zobecňuje i na nekonečné uspořádané množiny. (cs)
  • العدد الترتيبي هو عدد يُرتّب كل مدخل في مجموعة حسب موقعها ضمن المدخلات الأخرى. فعلى سبيل المثال: إذا كان س أكبر من ص، وص أكبر من ع، وع أكبر ن، فإن المقياس الترتيبي لهذه المجموعة {س، ص، ع، ن} هو: 1. * س 2. * ص 3. * ع 4. * ن ويمكن أن تستخدم الكلمات في الوصف أيضًا، كتصنيف المدخل على أنه «جيد» أو «مقبول» أو «سيئ». ومن الأمثلة على المقياس الترتيبي هو مقياس موس لقياس صلابة المواد. وفي الرياضيات فإن الأعداد الترتيبية تعتبر امتدادًا للأعداد الطبيعية وذلك لأخذ المتتاليات اللانهائية، والتي وضعها جورج كانتور، بعين الاعتبار. (ar)
  • In matematica, i numeri ordinali costituiscono un'estensione dei numeri naturali che tiene conto anche di successioni infinite, introdotta da Georg Cantor nel 1897. (it)
  • 数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。 (ja)
  • In de verzamelingenleer is een ordinaalgetal of ordinaal een generalisatie van het begrip natuurlijk getal. Net zoals met de natuurlijke getallen de elementen in een eindige verzameling in een volgorde gezet kunnen worden door de elementen te tellen, zijn ordinaalgetallen ook een soort getallen om objecten in een gegeven volgorde te plaatsen. (nl)
  • Liczby porządkowe – specjalne rodzaje zbiorów dobrze uporządkowanych, które są kanonicznymi reprezentantami klas izomorficzności dobrych porządków. Są też definiowane jako typy porządkowe dobrych porządków. Liczby porządkowe stanowią „rdzeń” uniwersum modeli teorii mnogości. Zostały one wprowadzone przez Georga Cantora w 1897 roku (jako typy porządkowe dobrych porządków). (pl)
  • Порядкове число (трансфінітне число, ординал) — в теорії множин, узагальнення натурального числа відмінне від цілих чисел та кардинальних чисел. Введені Георгом Кантором в 1897 для класифікації цілком впорядкованих множин. Відіграють ключову роль в доведенні багатьох теорем теорії множин, особливо разом з пов'язаним з ними принципом трансфінітної індукції. (uk)
  • 數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。 (zh)
  • Els nombres ordinals, o senzillament ordinals, són nombres usats per a denotar la posició en una successió ordenada: primer, segon, tercer, quart, etc. El matemàtic Georg Cantor va mostrar el 1897 com estendre aquest concepte més enllà dels nombres naturals fins a l'infinit, i com fer aritmètica amb aquests ordinals transfinits. Hom pot (i és usual de fer) definir el nombre natural n com el conjunt de tots els nombres naturals menors: (ca)
  • En matematika aroteorio, la ordonombroj estas nombrosistemo kiu vastigas la sistemon de naturaj nombroj al senfine grandaj nombroj. Notindas, ke ekzistas du malsamaj vastigoj de la naturaj nombroj al senfine grandaj nombroj: Se oni rigardas naturajn nombrojn en ilia funkcio kiel mezuriloj por grandeco de finhavaj aroj, tiam la vastigo al senfinaj aroj donas la kvantonombrojn. Se, aliflanke, oni rigardas la naturajn nombrojn en ilia funkcio kiel indikiloj de pozicioj en iu finhava ordigita aro, tiam vastigo al senfinaj aroj donas la ordonombrojn. (eo)
  • Ordinalzahlen sind mathematische Objekte, die das Konzept der Position oder des Index eines Elementes in einer Folge auf Wohlordnungen über beliebigen Mengen verallgemeinern. Positionen in Folgen werden als natürliche Zahlen aufgefasst (sprachlich durch die Ordinalia erstes, zweites, drittes, … Element ausgedrückt), welche die endlichen Ordinalzahlen bilden. Entscheidend bei dieser Verallgemeinerung ist, dass wie bei Folgen eine kleinste Position (die Ordinalzahl Null) existiert und jedes Element (mit Ausnahme eines eventuell vorhandenen letzten Elements) einen eindeutigen Nachfolger hat. Da totale Anordnungen, die diese Bedingungen erfüllen, immer noch sehr verschiedene Strukturen haben können, führt man als zusätzliche Bedingung ein, dass es zu jeder nichtleeren Teilmenge von Indizes ein (de)
  • En teoría de conjuntos, un número ordinal, o simplemente ordinal, es un representante del tipo de orden de un conjunto bien ordenado. De este modo, los ordinales clasifican todos los posibles conjuntos bien ordenados. Fueron introducidos por Georg Cantor en 1897. Los ordinales finitos (así como los cardinales finitos) son los números naturales 0, 1, 2,..., puesto que dos órdenes totales de un conjunto finito son . Al primer ordinal infinito se le denota ω. que se corresponden con distintas maneras de ordenar el conjunto de los números naturales. (es)
  • Zenbaki ordinalak zenbakien arteko ordena bat adierazteko erabiltzen direnak dira. Hauek adierazteko orduan euskal literaturan eta idazleen artean erabilera eta ohitura anitz izan direnez, batasuna egiteko Euskaltzaindiak beti puntu bat jartzea gomendatzen du ordinala adierazteko. Alegia, garren esango litzatekeen tokian puntua jarri behar da sistematikoki, inolako bereizketarik egin gabe erromatar zenbakien eta beste sistemetako zenbakien artean. Horrenbestez, zenbakien ondoren puntua erabiliko da eta garren zenbakiak letraz idazten direneko bakarrik utziko da. Ordinala adierazteko marka horri artikulua eta kasu marka gaineratuko zaizkio, hala beharko balitz, edozein sintagmarekin gertatzen den bezala: (eu)
  • In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . (en)
  • Bilangan ordinal dalam teori himpunan adalah jenis tatanan dari suatu himpunan yang teratur baik. Biasanya diidentifikasi dengan himpunan transitif hereditari. Bilangan ordinal merupakan perluasan bilangan asli, berbeda dengan integer dan dengan bilangan kardinal. Sebagaimana jenis bilangan lain, bilangan ordinal dapat dijumlahkan, dikalikan, dan dipangkatkan. Bilangan ordinal diperkenalkan oleh Georg Cantor pada tahun 1883 untuk mengakomodasi urutan dan untuk menggolongkan , yang sebelumnya telah disampaikannya pada tahun 1872 ketika mempelajari keunikan . Contoh: (in)
  • En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession. (fr)
  • 집합론에서 순서수(順序數, 영어: ordinal) 또는 서수(序數)는 정렬 전순서 집합들의 "길이"를 측정하는 수의 일종이다. 자연수를 확장하며, 자연수들의 정렬 전순서 집합과 같은 무한 정렬 전순서 집합들의 크기를 측정하는 무한 순서수들이 존재한다. 자연수는 집합의 크기를 표현하기 위해 사용되기도 하고, 열에서 원소의 위치를 나타내기 위해 사용되기도 한다. 이 두 쓰임새는 유한 집합의 경우 크게 다르지 않으나, 무한 집합의 경우에는 이 구분이 중요해진다. 전자를 확장한 것이 기수이고, 후자를 확장한 것이 순서수이다. (ko)
  • Na teoria dos conjuntos, um número ordinal, ou só ordinal, é um tipo de ordem de um conjunto bem-ordenado. Eles são usualmente identificados com conjuntos hereditariamente transitivos. Ordinais são uma extensão dos números naturais diferentes dos inteiros e dos cardinais. Como outros tipos de números, ordinais podem ser somados, multiplicados e exponenciados. (pt)
  • Ordinaltal är en typ av "tal" som mäter längden på välordningar och därmed är en generalisering av de naturliga talen. En del kallar dem mängdteorins ryggrad eftersom de är grundläggande inom mängdteorin. De används bland annat inom topologi, för att konstruera illustrativa exempel och motexempel på topologiska egenskaper. Om man accepterar urvalsaxiomet, så kan man identifiera kardinaltalen med en äkta delklass av ordinaltalen. (sv)
  • В теории множеств порядковым числом, или ординалом (лат. ordinalis — порядковый) называется вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными (лат. trans — за, через + finitio — край, предел). Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции. (ru)
rdfs:label
  • عدد ترتيبي (ar)
  • Nombre ordinal (ca)
  • Ordinální číslo (cs)
  • Ordinalzahl (de)
  • Ordonombro (eo)
  • Zenbaki ordinal (eu)
  • Número ordinal (teoría de conjuntos) (es)
  • Bilangan ordinal (in)
  • Numero ordinale (teoria degli insiemi) (it)
  • Nombre ordinal (fr)
  • 순서수 (ko)
  • 順序数 (ja)
  • Ordinaalgetal (nl)
  • Ordinal number (en)
  • Liczby porządkowe (pl)
  • Número ordinal (pt)
  • Порядковое число (ru)
  • Ordinaltal (sv)
  • 序数 (zh)
  • Порядкове число (uk)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License