About: Combination

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members. (The arrangement of the members in each set does not matter.) If the set has n elements, the number of k-combinations, denoted as , is equal to the binomial coefficient

Property Value
dbo:abstract
  • التوافيق (بالإنجليزية: Combination)‏ (جمع التوفيق) أو التوفيقات (ج التوفيقة) ويسمى أيضا التوليف والتوليفة والتركيب، هي عدد التشكيلات الممكنه لانتقاء مجموعة جزئية من مجموعة كلية من العناصر عندما يكون ليس هناك أهمية للترتيب.أو بعبارة أخرى, «التوافيق» هي عبارة عن عدد الطرق التي يمكن فيها انتقاء «ر» من العناصر من ضمن «ن» من العناصر المتوفرة دون مراعاة لترتيب تسلسل العناصر المنتقاة ضمن التشكيلات الممكنة للمجموعة الجزئية. عدد التوافيق أي مجموع الكيفيات التي يمكن أن ننتقي بها أفراد المجموعة دون مراعاة الترتيب.,ويشير n لعدد أفراد المجموعة التي يراد ترتيبها. و k يرمز إلى كيفية اخذ أفراد المجموعة. على سبيل المثال، ليكن لدينا ثلاثة فواكة وهي تفاحة وبرتقالة و كمثرى، فإنه يوجد ثلاث تشكيلات من عنصرين مختلفين منتقاه من هذه المجموعة وهي كالتالي: تفاحه وكمثرى أو تفاحة وبرتقالة أو كمثرى وبرتقالة. بصيغة رياضية، توافيق لعدد (k-combination ) من مجموعة ما هي مجموعة جزئية بها من العناصر المختلفة من . فإذا كانت المجموعة بها من العناصر فإن عدد توافيق لعدد من يساوي المعامل الثنائي المعرف بالعلاقة التالية:، والتي يمكن كتابته بدلالة المضروب بالشكل شريطة أن وتساوي صفر عندما . دائما يرمز لمجموعة جميع التوافيق لعدد من مجموعة بالرمز .التوافيق أو التراكيب هي تشكيلة مكونة من من العناصر مأخوذة من مجموعة بها عدد عنصر بحيث اختيار العناصر هنا يتم بنفس الوقت وبدون تكرار. في حالة السماح بالتكرار فإن التراكيب في هذه الحالة تسمى بعدة مسميات أخرى ك مختارات لعدد ( k-selection ) أو مجموعة متعددة من( k-multiset ) أو توافيق من بتكرار (k-combination with repetition ). ففي المثال السابق، إذا سمحنا بتكرار العناصر عند إنتقاء فاكهتين من مجموعة الفواكة الثلاث فإنه بالإضافة إلى ماسبق الحصول عليه سيكون لدينا ثلاث مختارات إضافية هي: تفاحتين أو برتقالتين أو اثنان من الكمثرى. في هذا المثال من السهل كتابة جميع التوافيق الممكنة لقلة الأعداد هنا لكن هذا مستحيل في حالة الجموعات الكبرى. فعلى سبيل المثال في لعبة poker hand يمكن وصف توافيق لعدد من البطاقات من مختارة من بطاقة ( أي أن ). لابد من أن يكون اختيار خمس بطاقات مختلفة لكن لايهم في هذه الحالة الترتيب. يوجد من التوافيق الممكنة في هذا المثال والذي يستحيل كتابتها جميعا لهذا العدد الكبير. (ar)
  • Kombinace je základní pojem z kombinatoriky. k-Členná kombinace z n prvků je skupina k prvků, vybraná z n různých prvků, u níž nezáleží na jejich pořadí. Od variace se liší tím, že je neuspořádaná. (cs)
  • Συνδυασμός των n στοιχείων ενός συνόλου Α ανά k ονομάζεται κάθε υποσύνολο του συνόλου Α με k στοιχεία. Για παράδειγμα, ας θεωρήσουμε το σύνολο Α={α,β,γ,δ} και ας γράψουμε όλα τα υποσύνολά του με τρία στοιχεία. Αυτά είναι τα εξής: {α,β,γ}, {α,β,δ}, {α,γ,δ} και {β,γ,δ}. Καθένα από αυτά τα τέσσερα υποσύνολα είναι ένας συνδυασμός των 4 στοιχείων του Α ανά 3. Το πλήθος των συνδυασμών n στοιχείων ανά k συμβολίζεται με και διαβάζεται «συνδυασμοί των n ανά k» Το πλήθος των συνδυασμών n στοιχείων ανά k είναι: , όπου n k. Διαφορετικά είναι αδύνατο καθώς δεν υπάρχει αρνητικό παραγοντικό ενός αριθμού. Η έκφραση n! διαβάζεται νι παραγοντικό και είναι το γινόμενο όλων των θετικών ακεραίων μικρότερων ή ίσων με ν. Για τους συνδυασμούς ισχύει η ιδιότητα: Στα προβλήματα συνδυασμών δεν έχει σημασία η διάταξη των στοιχείων (η σειρά επιλογής τους) παρά μόνο τα στοιχεία που θα επιλεγούν και έτσι το ζητούμενο είναι ο αριθμός των συνδυασμών και όχι των διατάξεων. Δύο συνδυασμοί ταυτίζονται αν έχουν τα ίδια στοιχεία. Δύο προβλήματα συνδυασμών 1. Στις γραπτές εξετάσεις οι μαθητές πρέπει από το σύνολο των 9 ερωτήσεων που τους δίνονται να απαντήσουν στις 6. Με πόσους τρόπους μπορεί ένας μαθητής να επιλέξει τις ερωτήσεις στις οποίες θα απαντήσει; Απάντηση 2. Με πόσους τρόπους μπορεί ένας παίχτης από μια τράπουλα με 52 χαρτιά να επιλέξει 5; Απάντηση (el)
  • Eine Kombination (von lateinisch combinatio ‚Zusammenfassung‘) oder ungeordnete Stichprobe ist in der Kombinatorik eine Auswahl von Objekten aus einer gegebenen Grundmenge, die (im Gegensatz zur Permutation) nicht alle Objekte der Grundmenge enthalten muss und bei der (im Gegensatz zur Permutation und Variation) die Reihenfolge unberücksichtigt bleibt. Können Objekte dabei mehrfach ausgewählt werden, so spricht man von einer Kombination mit Wiederholung. Darf dagegen jedes Objekt nur einmal auftreten, spricht man von einer Kombination ohne Wiederholung. Die Ermittlung der Anzahl möglicher Kombinationen ist eine Standardaufgabe der abzählenden Kombinatorik. (de)
  • En kombina matematiko, kombinaĵo estas ne ordigita kolekto de unikaj eroj. Por donita S, la aro de ĉiuj eblaj unikaj eroj, kombinaĵo estas subaro de la eroj de S. La ordo de la eroj en kombinaĵo estas ne grava (du listoj kun la samaj eroj en malsamaj ordoj estas konsiderataj kiel esti la sama kombinaĵo). Ankaŭ, la eroj ne povas ripetiĝi en kombinaĵo (ĉiu ero aperas unike iam). k-kombinaĵo (aŭ k-subaro) estas subaro kun k eroj. La kvanto de k-kombinaĵoj (ĉiu de amplekso k) de aro S kun n eroj (de amplekso n) estas la duterma koeficiento: (eo)
  • In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members. (The arrangement of the members in each set does not matter.) If the set has n elements, the number of k-combinations, denoted as , is equal to the binomial coefficient which can be written using factorials as whenever , and which is zero when . This formula can be derived from the fact that each k-combination of a set S of n members has permutations so or . The set of all k-combinations of a set S is often denoted by . A combination is a combination of n things taken k at a time without repetition. To refer to combinations in which repetition is allowed, the terms k-selection, k-multiset, or k-combination with repetition are often used. If, in the above example, it were possible to have two of any one kind of fruit there would be 3 more 2-selections: one with two apples, one with two oranges, and one with two pears. Although the set of three fruits was small enough to write a complete list of combinations, this becomes impractical as the size of the set increases. For example, a poker hand can be described as a 5-combination (k = 5) of cards from a 52 card deck (n = 52). The 5 cards of the hand are all distinct, and the order of cards in the hand does not matter. There are 2,598,960 such combinations, and the chance of drawing any one hand at random is 1 / 2,598,960. (en)
  • Konbinatorian, konbinazioak n elementuko multzo batetik k elementu aukeratzeko erak dira, era bakoitzean elementuen ordena kontuan hartu gabe. Konbinazio arruntak eta errepikatuzko konbinazioak bereizten dira, aukeratutako elementuak errepika daitezkeen. (eu)
  • Les combinaisons sont un concept de mathématiques, plus précisément de combinatoire, décrivant les différentes façons de choisir un nombre donné d'objets dans un ensemble de taille donnée, lorsque les objets sont discernables et que l'on ne se soucie pas l'ordre dans lequel les objets sont placés ou énumérés. Autrement dit, les combinaisons de taille k d'un ensemble E de cardinal n sont les sous-ensembles de E qui ont pour taille k. Contrairement aux arrangements, les combinaisons s'intéressent uniquement aux éléments choisis parmi l'ensemble, et non à l'ordre dans lequel ils sont tirés. Un exemple est la main obtenue en tirant simultanément k cartes dans un jeu de n cartes. De même, au jeu du loto, le tirage de 6 numéros parmi 49 ne fait pas référence à l'ordre de tirage des boules, mais au tirage final vu comme un ensemble non ordonné de 6 numéros. Les combinaisons sont utilisées, entre autres, en dénombrement et en probabilités. (fr)
  • Nel calcolo combinatorio, dati n e k due interi positivi, si definisce combinazione di n elementi presi k alla volta (oppure di n elementi di classe k oppure di n elementi a k a k) ogni sottoinsieme di k elementi estratti da un insieme di n elementi. Si parla di combinazione semplice se essa non può avere elementi che si ripetono e di combinazione con ripetizione altrimenti. Nel caso di combinazioni semplici deve risultare necessariamente k ≤ n. In entrambi i casi i sottoinsiemi vanno considerati indipendentemente dall'ordine degli elementi. Ad esempio, se siamo in presenza dell'insieme {p,q,r,s,t} e prendiamo in esame le combinazioni di classe 3, i gruppi prs, psr, rps, spr, rsp ed srp rappresentano la stessa combinazione in quanto formati dagli stessi elementi mentre i gruppi prs ed srq rappresentano due diverse combinazioni in quanto differiscono in almeno uno degli elementi. (it)
  • Istilah kombinasi dalam berarti himpunan objek yang tidak mementingkan urutan. Kombinasi berbeda dengan permutasi yang mementingkan urutan objek. Perkataan kombinasi memiliki sebutan lainnya yaitu gabungan, padu-padan atau kepadupadanan (in)
  • 数学において、組合せ(くみあわせ、英: combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。身近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。 (ja)
  • 조합론에서 조합(組合, 문화어: 무이, 영어: combination)은 서로 다른 n개의 원소를 가지는 어떤 집합 (사실, 집합은 서로 다른 원소의 모임으로 정의된다.)에서 순서에 상관없이 r개의 원소를 선택하는 것이며, (즉, 선택의 순서와 상관없이 같은 원소들이 선택되었다면 같은 조합이며 다른 원소들이 선택되었다면 다른 조합이다.) 이는 n개의 원소로 이루어진 집합에서 r개의 원소로 이루어진 부분집합을 만드는 것 혹은 찾는 것과 같다. 가능한 조합의 수는 이항계수와 같다. (ko)
  • Kombinacja bez powtórzeń – dowolny podzbiór zbioru skończonego. Jeśli zbiór jest -elementowy, to -elementowy podzbiór jest określany jako -elementowa kombinacja zbioru -elementowego. Używa się też terminu „kombinacja z elementów po elementów” lub po prostu „kombinacja z po ”. Dopełnieniem kombinacji z po jest kombinacja z po Liczba kombinacji z po wyraża się wzorem: Każda kombinacja po jest klasą abstrakcji wszystkich -wyrazowych wariacji bez powtórzeń zbioru -elementowego różniących się między sobą jedynie kolejnością elementów. Kombinację po można interpretować jako ściśle rosnącą funkcję (pl)
  • Er is binnen de wiskunde sprake van een combinatie als er elementen worden gekozen uit een verzameling van elementen, waarbij * ieder element hoogstens eenmaal gekozen wordt ("zonder terugleggen") en * waarbij er niet gelet wordt op de volgorde van de elementen ("volgorde niet van belang"). Het aantal combinaties van elementen uit een verzameling van elementen wordt genoteerd als de binomiaalcoëfficiënt (spreek uit als n over k of als n boven k). De binomiaalcoëfficiënt komt voor als coëfficiënt in het Binomium van Newton en dankt daaraan zijn naam. Een binomiaalcoëfficiënt kan worden berekend met de formule Het uitroepteken in de formule hierboven staat voor het berekenen van de faculteit. In de noemer van de formule staat , terwijl in de teller precies factoren staan, beginnend bij en vervolgens telkens met 1 afnemend. Het begrip kent ook uitbreidingen, waarbij in plaats van de natuurlijke getallen en het rechterdeel van de formule geldt voor een complex getal of reëel getal in plaats van het natuurlijk getal maar waarbij wel een natuurlijk getal blijft. Die uitbreiding kent toepassingen in reeksen van complexe getallen. Als alternatieve notatie voor komen onder meer voor: , , en waarin de staat voor het Engelse woord combination of choice. Op sommige (grafische) rekenmachines staat of . (nl)
  • Uma combinação sem repetição, em análise combinatória, é um subconjunto com elementos em um conjunto com elementos. Como é um conjunto, não há repetição de membros dentro do conjunto. O número de subconjuntos de elementos diferentes de um conjunto de elementos diferentes pode ser representado por: ou (pt)
  • В математиці комбінація або сполука це спосіб вибору декількох речей з більшої групи, де (на відміну від розміщення) порядок не має значення. У випадку з маленькими числами можливо підрахувати кількість сполук. Наприклад, дано три фрукти, яблуко, помаранч і груша, існують три сполуки по два фрукти, що можуть бути отримані з цього набору: яблуко і груша, яблуко і помаранч, або груша і помаранч. Формальніше k-сполука множини S це підмножина утворена k різними елементами S. Якщо множина містить n елементів, тоді кількість k-сполук дорівнює біноміальному коефіцієнту який можна записати із використанням факторіалів так коли , і який дорівнює нулю .Множина всіх k-сполук множини S іноді записується як Сполуки можуть допускати повторення, а можуть ні. В попередньому прикладі повторення не дозволялись. Однак, якщо вони були б дозволені, ми мали б три додаткові сполуки: два яблука, два помаранчі і дві груші. Число комбінацій з повтореннями з n по k дорівнює числу комбінацій без повторень з (n+k-1) по k. За фіксованого n, генератрисою послідовності чисел сполук , , , … є Двовимірною генератрисою чисел сполук є Сума всіх сполук з k від 0 до n дорівнює (uk)
  • В комбинаторике сочетанием из по называется набор из элементов, выбранных из -элементного множества, в котором не учитывается порядок элементов. Соответственно, сочетания, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми — этим сочетания отличаются от размещений. Так, например, 3-элементные сочетания 2 и 3 ((нестрогие) подмножества, для которых ) из 6-элементного множества 1 являются одинаковыми (в то время как размещения были бы разными) и состоят из одних и тех же элементов 1. В общем случае количество всех возможных -элементных подмножеств -элементного множества стоит на пересечении -й диагонали и -й строки треугольника Паскаля. (ru)
  • 在組合數學,一個集的元素的組合(英語:Combination)是一個子集。S的一個k-組合是S的一個有k個元素的子集。若兩個子集的元素完全相同並順序相異,它仍視為同一個組合,這是組合和排列不同之處。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5308 (xsd:integer)
dbo:wikiPageLength
  • 26798 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1056798872 (xsd:integer)
dbo:wikiPageWikiLink
dbp:bot
  • InternetArchiveBot (en)
dbp:date
  • November 2019 (en)
dbp:fixAttempted
  • yes (en)
dbp:showhide
  • left (en)
dbp:title
  • Proof (en)
dbp:titlestyle
  • background:lightgray; (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Kombinace je základní pojem z kombinatoriky. k-Členná kombinace z n prvků je skupina k prvků, vybraná z n různých prvků, u níž nezáleží na jejich pořadí. Od variace se liší tím, že je neuspořádaná. (cs)
  • Eine Kombination (von lateinisch combinatio ‚Zusammenfassung‘) oder ungeordnete Stichprobe ist in der Kombinatorik eine Auswahl von Objekten aus einer gegebenen Grundmenge, die (im Gegensatz zur Permutation) nicht alle Objekte der Grundmenge enthalten muss und bei der (im Gegensatz zur Permutation und Variation) die Reihenfolge unberücksichtigt bleibt. Können Objekte dabei mehrfach ausgewählt werden, so spricht man von einer Kombination mit Wiederholung. Darf dagegen jedes Objekt nur einmal auftreten, spricht man von einer Kombination ohne Wiederholung. Die Ermittlung der Anzahl möglicher Kombinationen ist eine Standardaufgabe der abzählenden Kombinatorik. (de)
  • En kombina matematiko, kombinaĵo estas ne ordigita kolekto de unikaj eroj. Por donita S, la aro de ĉiuj eblaj unikaj eroj, kombinaĵo estas subaro de la eroj de S. La ordo de la eroj en kombinaĵo estas ne grava (du listoj kun la samaj eroj en malsamaj ordoj estas konsiderataj kiel esti la sama kombinaĵo). Ankaŭ, la eroj ne povas ripetiĝi en kombinaĵo (ĉiu ero aperas unike iam). k-kombinaĵo (aŭ k-subaro) estas subaro kun k eroj. La kvanto de k-kombinaĵoj (ĉiu de amplekso k) de aro S kun n eroj (de amplekso n) estas la duterma koeficiento: (eo)
  • Konbinatorian, konbinazioak n elementuko multzo batetik k elementu aukeratzeko erak dira, era bakoitzean elementuen ordena kontuan hartu gabe. Konbinazio arruntak eta errepikatuzko konbinazioak bereizten dira, aukeratutako elementuak errepika daitezkeen. (eu)
  • Istilah kombinasi dalam berarti himpunan objek yang tidak mementingkan urutan. Kombinasi berbeda dengan permutasi yang mementingkan urutan objek. Perkataan kombinasi memiliki sebutan lainnya yaitu gabungan, padu-padan atau kepadupadanan (in)
  • 数学において、組合せ(くみあわせ、英: combination, choose)とは、相異なる(あるいは区別可能な)いくつかの要素の集まりからいくつかの要素を(重複無く)選び出す方法である。あるいは選び出した要素をその“並べる順番の違いを区別せずに”並べたもののことである。組合せは組合せ論と呼ばれる数学の分野で研究される。身近な例でいえば、デッキ(山札)から決まった数のカード(手札)を引くことや、ロトくじなどがその例である。 (ja)
  • 조합론에서 조합(組合, 문화어: 무이, 영어: combination)은 서로 다른 n개의 원소를 가지는 어떤 집합 (사실, 집합은 서로 다른 원소의 모임으로 정의된다.)에서 순서에 상관없이 r개의 원소를 선택하는 것이며, (즉, 선택의 순서와 상관없이 같은 원소들이 선택되었다면 같은 조합이며 다른 원소들이 선택되었다면 다른 조합이다.) 이는 n개의 원소로 이루어진 집합에서 r개의 원소로 이루어진 부분집합을 만드는 것 혹은 찾는 것과 같다. 가능한 조합의 수는 이항계수와 같다. (ko)
  • Uma combinação sem repetição, em análise combinatória, é um subconjunto com elementos em um conjunto com elementos. Como é um conjunto, não há repetição de membros dentro do conjunto. O número de subconjuntos de elementos diferentes de um conjunto de elementos diferentes pode ser representado por: ou (pt)
  • 在組合數學,一個集的元素的組合(英語:Combination)是一個子集。S的一個k-組合是S的一個有k個元素的子集。若兩個子集的元素完全相同並順序相異,它仍視為同一個組合,這是組合和排列不同之處。 (zh)
  • التوافيق (بالإنجليزية: Combination)‏ (جمع التوفيق) أو التوفيقات (ج التوفيقة) ويسمى أيضا التوليف والتوليفة والتركيب، هي عدد التشكيلات الممكنه لانتقاء مجموعة جزئية من مجموعة كلية من العناصر عندما يكون ليس هناك أهمية للترتيب.أو بعبارة أخرى, «التوافيق» هي عبارة عن عدد الطرق التي يمكن فيها انتقاء «ر» من العناصر من ضمن «ن» من العناصر المتوفرة دون مراعاة لترتيب تسلسل العناصر المنتقاة ضمن التشكيلات الممكنة للمجموعة الجزئية. عدد التوافيق أي مجموع الكيفيات التي يمكن أن ننتقي بها أفراد المجموعة دون مراعاة الترتيب.,ويشير n لعدد أفراد المجموعة التي يراد ترتيبها. و k يرمز إلى كيفية اخذ أفراد المجموعة. (ar)
  • Συνδυασμός των n στοιχείων ενός συνόλου Α ανά k ονομάζεται κάθε υποσύνολο του συνόλου Α με k στοιχεία. Για παράδειγμα, ας θεωρήσουμε το σύνολο Α={α,β,γ,δ} και ας γράψουμε όλα τα υποσύνολά του με τρία στοιχεία. Αυτά είναι τα εξής: {α,β,γ}, {α,β,δ}, {α,γ,δ} και {β,γ,δ}. Καθένα από αυτά τα τέσσερα υποσύνολα είναι ένας συνδυασμός των 4 στοιχείων του Α ανά 3. Το πλήθος των συνδυασμών n στοιχείων ανά k συμβολίζεται με και διαβάζεται «συνδυασμοί των n ανά k» Το πλήθος των συνδυασμών n στοιχείων ανά k είναι: , όπου n k. Διαφορετικά είναι αδύνατο καθώς δεν υπάρχει αρνητικό παραγοντικό ενός αριθμού. (el)
  • In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members. (The arrangement of the members in each set does not matter.) If the set has n elements, the number of k-combinations, denoted as , is equal to the binomial coefficient (en)
  • Les combinaisons sont un concept de mathématiques, plus précisément de combinatoire, décrivant les différentes façons de choisir un nombre donné d'objets dans un ensemble de taille donnée, lorsque les objets sont discernables et que l'on ne se soucie pas l'ordre dans lequel les objets sont placés ou énumérés. Autrement dit, les combinaisons de taille k d'un ensemble E de cardinal n sont les sous-ensembles de E qui ont pour taille k. Les combinaisons sont utilisées, entre autres, en dénombrement et en probabilités. (fr)
  • Nel calcolo combinatorio, dati n e k due interi positivi, si definisce combinazione di n elementi presi k alla volta (oppure di n elementi di classe k oppure di n elementi a k a k) ogni sottoinsieme di k elementi estratti da un insieme di n elementi. Si parla di combinazione semplice se essa non può avere elementi che si ripetono e di combinazione con ripetizione altrimenti. Nel caso di combinazioni semplici deve risultare necessariamente k ≤ n. (it)
  • Kombinacja bez powtórzeń – dowolny podzbiór zbioru skończonego. Jeśli zbiór jest -elementowy, to -elementowy podzbiór jest określany jako -elementowa kombinacja zbioru -elementowego. Używa się też terminu „kombinacja z elementów po elementów” lub po prostu „kombinacja z po ”. Dopełnieniem kombinacji z po jest kombinacja z po Liczba kombinacji z po wyraża się wzorem: Każda kombinacja po jest klasą abstrakcji wszystkich -wyrazowych wariacji bez powtórzeń zbioru -elementowego różniących się między sobą jedynie kolejnością elementów. (pl)
  • Er is binnen de wiskunde sprake van een combinatie als er elementen worden gekozen uit een verzameling van elementen, waarbij * ieder element hoogstens eenmaal gekozen wordt ("zonder terugleggen") en * waarbij er niet gelet wordt op de volgorde van de elementen ("volgorde niet van belang"). Het uitroepteken in de formule hierboven staat voor het berekenen van de faculteit. In de noemer van de formule staat , terwijl in de teller precies factoren staan, beginnend bij en vervolgens telkens met 1 afnemend. Als alternatieve notatie voor komen onder meer voor: , , en (nl)
  • В комбинаторике сочетанием из по называется набор из элементов, выбранных из -элементного множества, в котором не учитывается порядок элементов. Соответственно, сочетания, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми — этим сочетания отличаются от размещений. Так, например, 3-элементные сочетания 2 и 3 ((нестрогие) подмножества, для которых ) из 6-элементного множества 1 являются одинаковыми (в то время как размещения были бы разными) и состоят из одних и тех же элементов 1. (ru)
  • В математиці комбінація або сполука це спосіб вибору декількох речей з більшої групи, де (на відміну від розміщення) порядок не має значення. У випадку з маленькими числами можливо підрахувати кількість сполук. Наприклад, дано три фрукти, яблуко, помаранч і груша, існують три сполуки по два фрукти, що можуть бути отримані з цього набору: яблуко і груша, яблуко і помаранч, або груша і помаранч. Формальніше k-сполука множини S це підмножина утворена k різними елементами S. Якщо множина містить n елементів, тоді кількість k-сполук дорівнює біноміальному коефіцієнту (uk)
rdfs:label
  • Combination (en)
  • توفيق (رياضيات) (ar)
  • Kombinace (cs)
  • Kombination (Kombinatorik) (de)
  • Συνδυασμός (μαθηματικά) (el)
  • Kombinaĵo (kombinatoriko) (eo)
  • Konbinazio (konbinatoria) (eu)
  • Kombinasi (in)
  • Combinaison (mathématiques) (fr)
  • 組合せ (数学) (ja)
  • Combinazione (it)
  • 조합 (ko)
  • Kombinacja bez powtórzeń (pl)
  • Combinatie (wiskunde) (nl)
  • Combinação (pt)
  • Сочетание (ru)
  • Kombination (matematik) (sv)
  • Комбінація (комбінаторика) (uk)
  • 組合 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is gold:hypernym of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License