About: Formal system

An Entity of Type: Know-how105616786, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought.

Property Value
dbo:abstract
  • Un sistema formal o axiomàtic és un artifici matemàtic compost de símbols que s'uneixen entre si formant cadenes que, al seu torn, poden ser manipulades segons regles per produir altres cadenes. D'aquesta manera, el sistema formal és capaç de representar cert aspecte de la realitat. El terme «formalisme» s'utilitza, de vegades, com a sinònim de sistema formal, per a un determinat propòsit. Un sistema formal matemàtic consisteix en el següent: 1. * Un conjunt finit de símbols que poden ser usats per a la construcció de fórmules. 2. * Una gramàtica, és a dir, un mecanisme per a la construcció de fórmules ben formades (WFF). També s'ha de proporcionar un algorisme de decisió per conèixer si una determinada fórmula és ben formada o no. 3. * Un conjunt d'axiomes que han de ser fórmules WFF. 4. * Un conjunt de regles d'inferència. 5. * Un conjunt de teoremes. Aquest conjunt inclou tots els axiomes, més totes les WFF que poden ser derivades dels axiomes o d'altres teoremes per mitjà de les regles d'inferència. La gramàtica no necessàriament garanteix la decidibilitat de si una fórmula és teorema o no. En les ciències formals de la lògica i les matemàtiques, així com en altres disciplines relacionades, com són la informàtica, la teoria de la informació, i l'estadística, un sistema formal és una gramàtica formal usada per a la modelització de diferents propòsits. S'anomena formalització l'acte de crear un sistema formal, i es tracta d'una acció amb la qual pretenem capturar i abstreure l'essència de determinades característiques del món real, en un model conceptual expressat en un determinat llenguatge formal. En matemàtiques, les proves formals són el resultat de sistemes formals, consistents en axiomes i regles de deducció. Els teoremes poden ser obtinguts per mitjà de proves formals. Aquest punt de vista de les matemàtiques ha estat anomenat formalista, encara que moltes vegades aquest terme comporta una accepció pejorativa. En aquest sentit, David Hilbert va crear la disciplina anomenada metamatemàtica, dedicada a l'estudi dels sistemes formals, entenent que el llenguatge utilitzat per a això, anomenat metallenguatge, era diferent del llenguatge del sistema formal que es pretenia estudiar. Amb una altra denominació, el metallenguatge o llenguatge obtingut mitjançant la gramàtica formal es diu també, a vegades, llenguatge objecte. Un sistema així és la reducció d'un llenguatge formalitzat a mers símbols, llenguatge formalitzat i simbolitzat sense cap contingut material; un llenguatge reduït a mera forma que s'expressa mitjançant fórmules que reflecteixen les relacions sintàctiques entre els símbols i les regles de formació i transformació que permeten construir les fórmules del sistema i passar d'una fórmula a una altra. L'objectiu d'un sistema formal és assenyalar com a vàlides determinades cadenes. Aquestes cadenes vàlides es denominen teoremes. Per a obtenir els teoremes, es fan servir les regles de producció que converteixen una cadena en una altra. Hi ha certs teoremes inicials que no s'obtenen de cap regla, aquests són els axiomes que se suposen vàlids per definició i es converteixen en el germen de producció de teoremes. (ca)
  • يتم تعريف النظام الشكلي بشكل واسع النطاق على أنه أي نظام تفكير تجريدي قائم على نموذج رياضيات. ويتم في الغالب النظر إلى أصول إقليدس على أنها أول نظام شكلي وعلى أنها تعرض سمات النظام الشكلي. وتعد القضية الشرطية للنظام من خلال الأساس المنطقي له هي ما تميز النظام الشكلي عن غيره مما يمكن أن تكون قد أصبحت أسسًا في نموذج تجريدي. وفي الغالب، يكون النظام الشكلي أساسًا لنظرية أكبر أو مجال أكبر ويمكن التعرف عليه من خلالهما (على سبيل المثال هندسة إقليدس) بما يتوافق مع الاستخدام في الرياضيات الحديثة مثل نظرية النموذج. ويجب أن يكون النظام الشكلي رياضيًا، وبالتالي، فإن كتاب علم الأخلاق لسبينوزا على سبيل المثال يقلد شكل أصول إقليدس. وكل نظام شكلي له لغة شكلية، تتكون من خلال رموز بدائية. وتعمل هذه الرموز على أساس قواعد تكوين محددة ويتم تطويرها من خلال الاستدلال من مجموعة من البديهيات. وبالتالي، يتكون النظام من مجموعة من الصيغ التي يتم بناؤها من خلال مجموعات نهائية من الرموز البدائية، والتي تكون عبارة عن مجموعة يتم تشكيلها من البديهيات بما يتوافق مع القواعد المحددة. وتتكون الأنظمة الشكلية في الرياضيات من العناصر التالية: 1. * مجموعة متناهية من الرموز (أي الأبجدية)، والتي يمكن استخدامها من أجل وضع الصيغ (أي السلاسل النهائية من الرموز). 2. * قواعد لغة، تحدد كيفية تكوين الصيغ جيدة التكوين (اختصارًا wff) من الرموز الموجودة في الأبجدية. ويكون من الضروري غالبًا أن يكون هناك إجراء لاتخاذ القرارات لتحديد ما إذا كانت الصيغة جيدة التكوين أم لا. 3. * مجموعة من البديهيات أو مخطط البديهيات: يجب أن تكون كل بديهية عبارة عن صيغة جيدة التكوين. 4. * مجموعة من قواعد الاستدلال. يقال إن النظام الشكلي يكون متميزًا بالاستدعاء الذاتي (أي الفاعلية) إذا كانت مجموعة البديهيات ومجموعة قواعد الاستدلال عبارة عن مجموعات يمكن تقريرها أو مجموعات شبه محددة، حسب السياق. وتستخدم بعض النظريات المصطلح الشكلية كمرادف تقريبي للنظام الشكلي، إلا أن المصطلح يستخدم كذلك للإشارة إلى نمط محدد للمصطلحات، على سبيل المثال رمز براكيت لبول ديراك. (ar)
  • Στην λογική, ένα τυπικό σύστημα (formal system), ή λογικό σύστημα (logic system), ή απλά λογική αποτελείται από μια τυπική γλώσσα σε συδυασμό με ένα συμπερασματικό σύστημα, που αποτελείται από ένα σύνολο από συμπερασματικούς κανόνες και/ή αξιώματα. Ένα τυπικό σύστημα χρησιμοποιείται για να μια έκφραση από μια ή περισσότερες άλλες εκφράσεις που διατυπώνονται ως υποθέσεις. Οι εκφράσεις αυτές λέγονται αξιώματα, στην περίπτωση που υποτίθεται ότι είναι αληθείς, ή θεωρήματα, στην περίπτωση που παράγονται. Ένα τυπικό σύστημα μπορεί να διατυπωθεί και να μελετηθεί για τις εγγενείς του ιδιότητες, ή μπορεί να έχει στόχο την περιγραφή εξωτερικών φαινομένων. (el)
  • Ein formales System ist ein System von Symbolketten und Regeln. Die Regeln sind Vorschriften für die Umwandlung einer Symbolkette in eine andere, also Produktionen einer formalen Grammatik. Die Anwendung der Regeln kann dabei ohne Kenntnis der Bedeutung der Symbole, also rein syntaktisch erfolgen. Formale Systeme werden in verschiedenen wissenschaftlichen Disziplinen wie der Logik, Mathematik, Informatik und Linguistik verwendet, insbesondere um neue Aussagen aus bereits bekanntem Wissen herzuleiten. Kalkül wird oft in derselben Bedeutung wie formales System verwendet; manchmal wird unter einem Kalkül jedoch ein formales System mit bestimmten Einschränkungen verstanden. (de)
  • A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought. The term formalism is sometimes a rough synonym for formal system, but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. (en)
  • Un sistema formal o sistema lógico es un sistema abstracto compuesto por un lenguaje formal, axiomas, reglas de inferencia y a veces una semántica formal, que se utiliza para deducir o demostrar teoremas y dar una definición rigurosa del concepto de demostración. Un sistema formal es una formalización rigurosa y completa del concepto de sistema axiomático, los cuales se pueden expresar en lenguaje formal o en lenguaje natural formalizado. Al crear un sistema formal se pretende capturar y abstraer la esencia de determinadas características del mundo real, en un modelo conceptual expresado en un determinado lenguaje formal. Algunos de los sistemas formales más conocidos son la lógica proposicional, la lógica de primer orden y la lógica modal. En la teoría de la demostración, las demostraciones formales se pueden expresar en el lenguaje de los sistemas formales, consistentes en axiomas y reglas de inferencia. Los teoremas pueden ser obtenidos por medio de demostraciones formales. Este punto de vista de las matemáticas ha sido denominado formalista; aunque en muchas ocasiones este término conlleva una acepción peyorativa. En ese sentido, David Hilbert creó la metamatemática para estudiar los sistemas formales, entendiendo que el lenguaje utilizado para ello, denominado metalenguaje era distinto del lenguaje del sistema formal que se pretendía estudiar, al que se llama lenguaje objeto. Un sistema así es la reducción de un lenguaje formalizado a meros símbolos, lenguaje formalizado y simbolizado sin contenido material alguno; un lenguaje reducido a mera forma que se expresa mediante fórmulas que reflejan las relaciones sintácticas entre los símbolos y las reglas de formación y transformación que permiten construir las fórmulas del sistema y pasar de una fórmula a otra.​ Una teoría axiomática es un conjunto de fórmulas en un determinado lenguaje formal y todas las fórmulas deducibles de dichas expresiones mediante las reglas de inferencia posibles en dicho sistema formal. El objetivo de las teorías axiomáticas es construir sistemas formales que representen las características esenciales de ramas enteras de las matemáticas. Si se selecciona un conjunto más amplio o menos amplio de axiomas el conjunto de teoremas deducibles cambian. El interés de la teoría de modelos es que en un modelo en que satisfagan los axiomas de determinada teoría también se satisfacen los teoremas deducibles de dicha teoría. Es decir, si un teorema es deducible en una cierta teoría, entonces ese teorema es universalmente válido en todos los modelos que satisfacen los axiomas. Esto es interesante porque en principio la clase de modelos que satisface una cierta teoría es difícil de conocer, ya que las teorías matemáticas interesantes en general admiten toda clase infinita de modelos no isomorfos, por lo que su clasificación en general resulta difícilmente abordable si no existe un sistema formal y un conjunto de axiomas que caracterice los diferentes tipos de modelos. En el siglo XX, Hilbert y otros sostuvieron que la matemática es un sistema formal. Pero en 1931, Kurt Gödel demostró que ningún sistema formal con suficiente poder expresivo para capturar la aritmética de Peano puede ser a la vez consistente y completo. El teorema de la incompletitud de Gödel, junto con la demostración de Alonzo Church de que la matemática tampoco es decidible, terminó con el programa de Hilbert. Sin embargo, a pesar de sus limitaciones, el enfoque sigue siendo ampliamente usado, básicamente porque no se ha encontrado ninguna alternativa mejor al enfoque formalista de Hilbert y la pretensión de trabajar en el seno de teorías matemáticas explícitamente axiomatizadas, aun con sus limitaciones. Los sistemas formales también han encontrado aplicación dentro de la informática, la teoría de la información y la estadística. (es)
  • Un système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis…). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif. Les systèmes formels s'opposent aux langues naturelles pour lesquels les algorithmes de traitement sont extrêmement complexes et surtout doivent évoluer dans le temps pour s'adapter aux transformations du langage. Les systèmes formels sont apparus en logique mathématique afin de représenter mathématiquement le langage et le raisonnement mathématique, mais peuvent se trouver également dans d'autres contextes : informatique, chimie… (fr)
  • 형식 체계(形式體系, 영어: formal system)는 공리들로부터 추론 규칙들을 통해 정리를 이끌어낼 수 있는 논리적 체계를 가리킨다. 또한 이를 표기하기 위한 기호들(alphabets)과 그로부터 문장을 구성하기 위한 문법(grammar)을 필요로 한다. 형식체계는 20세기 초 수학기초론을 세우는 과정에서 성립하였으며 현대 기호논리학의 기초적 개념으로 쓰인다. 이를 모든 논리의 기초로 보는 입장을 형식주의(formalism)이라 한다. (ko)
  • 形式体系(けいしきたいけい、Formal System)は、数学のモデルに基づいた任意の well-defined な抽象思考体系と定義される。エウクレイデスの『原論』は史上初の形式体系とされることが多く、形式体系の特徴をよく表している。その論理的基盤による体系の命題と帰結の関係(論理包含)は、他の抽象モデルを何らかの基盤とする体系から形式体系を区別するものである。形式体系は大きな理論や分野(例えばユークリッド幾何学)の基盤またはそのものとなることが多く、現代数学では証明論やモデル理論などと同義に扱われる。ただし形式体系は必ずしも数学的である必然性はなく、例えばスピノザの『エチカ』はエウクレイデスの『原論』の形式を模倣した哲学(倫理学)書である。 形式体系には形式言語があり、その形式言語は基本的な記号(シンボル)で構成される。形式言語の文(式)は公理群を出発点として、所定の構成規則(推論規則)に従って発展する。従って形式体系は基本的な記号群の有限の組み合わせを通して構築された任意個の数式で構成され、その組み合わせは公理群と構成規則群から作り出される。 数学における形式体系は以下の要素から構成される: 1. * 式を構成するのに使われる有限個の記号(アルファベット)。 2. * 文法。すなわち、正しい式を記号から構成するための方法。例えば、論理学で言えば任意の式(記号を適当に並べたもの)が整式かどうかを決定する何らかの手順が存在する。 3. * 公理群または公理スキーマ。各公理は整式でなければならない。 4. * 推論規則群。 5. * 定理群。 形式体系が帰納的であるとは、公理群と推論規則群が(文脈によって)帰納的集合または帰納的可算集合である場合を意味する。 人によっては「形式主義」と「形式体系」をほぼ同義に扱うが、「形式主義」は数学や論理学以外にも適用される用語である。例えば、ポール・ディラックのブラ-ケット記法は物理学における形式主義である。 (ja)
  • System formalny – język formuł (logiki) wraz ze zbiorem (wywodu) i zwykle zbiorem aksjomatów. Systemy formalne są tworzone i badane zarówno jako samodzielne abstrakcyjne twory, jak i systemy opisu rzeczywistości. W matematyce formalnie dowody twierdzeń konstruuje się w systemach formalnych zawierających aksjomaty oraz reguły dedukcji (wyprowadzania). Twierdzenia są wtedy „ostatnimi liniami” takich dowodów. Zbiór aksjomatów i wszystkich możliwych twierdzeń nazywa się domknięciem zbioru aksjomatów ze względu na wyprowadzanie. Takie podejście do matematyki nazywane jest formalizmem matematycznym. David Hilbert nazwał metamatematyką naukę badającą systemy formalne. System formalny w matematyce zawiera następujące elementy: 1. * Skończony zbiór symboli, z którego konstruowane są formuły. 2. * Gramatykę opisującą jakie formuły są poprawnie skonstruowane i pozwalającą zweryfikować poprawność dowolnej formuły. 3. * Zbiór aksjomatów, będących poprawnie skonstruowanymi formułami. 4. * Zbiór reguł wyprowadzania. 5. * Zbiór twierdzeń zawierający wszystkie aksjomaty oraz wszystkie poprawnie skonstruowane formuły, które da się wyprowadzić z aksjomatów za pomocą reguł wyprowadzania. Należy pamiętać, że nawet jeżeli dana formuła jest poprawną formułą systemu, to nie oznacza to, że istnieje procedura decyzyjna określająca, czy jest ona twierdzeniem. (pl)
  • Um sistema formal ou sistema lógico é, por assim dizer, qualquer sistema de pensamento abstrato bem definido, em um modelo matemático. Tecnicamente, Os Elementos de Euclides, com um modelo consistindo de 23 definições e 10 postulados/axiomas publicados em 13 livros de teoremas com provas, é frequentemente considerado o primeiro sistema formal e mostra as características de um sistema formal. A implicação de um sistema por sua base lógica é o que distingue o sistema formal de outros que podem ter alguma base em um modelo abstrato. Muitas vezes, o sistema formal será a base, ou será identificado por si só, como uma teoria maior ou um campo consistente com o uso da matemática moderna, como a teoria dos modelos. (pt)
  • Een formeel systeem is een combinatie van een formele taal en een verzameling afleidings- of transformatieregels of axioma's die zinnen in de formele taal omzetten in nieuwe zinnen. Formele systemen worden gebruikt als formeel bewijs. Vrijwel alle formele systemen maken gebruik van de axiomatische methode om nieuwe uitdrukkingen af te leiden uit oude die eerder in het systeem zijn uitgedrukt. De oude uitdrukkingen die worden verondersteld waar te zijn worden axioma's genoemd, de nieuwe uitdrukkingen heten stellingen. Voorbeelden van formele systemen zijn de propositie-, predicaten- en andere logica's. Een formeel systeem kan zelf worden bestudeerd aan de hand van zijn intrinsieke eigenschappen, of worden gebruikt als model om externe verschijnselen mee te beschrijven. (nl)
  • Ett formellt system, även kallat axiomatiskt system, är ursprungligen en symbolisk representation av en matematisk teori. En uppsättning axiom formuleras i ett begränsat symboliskt språk och med hjälp av bestämda härledningsregler kan därefter vissa formler härledas. Sådana härledbara formler kallas teorem. Även axiomen själva räknas som teorem. Det finns formella system för första ordningens logik, satslogik, modallogik, relationell logik etc. Det finns också formella system, som ZF och ZFC, som formaliserar mängdteori genom att omfatta både första ordningens logik och ett antal mängdteoretiska axiom. Inget hindrar att man skapar ett formellt system utan att ha en matematisk teori i åtanke. Det formella systemet har då en närmast kombinatorisk tolkning. Ett exempel på ett sådant system är om man tar följande formler som axiom: 1. * AB 2. * CB och inför följande "härledningsregler": 1. * På alla ställen där det står B får man lägga till B direkt efter. 2. * Man får ta bort C var man vill. Då är "formeln" BBB härledbar: CB -(H1)→ CBB -(H1)→ CBBB -(H2)→ BBB Den här typen av formella system har visst intresse i datorvetenskap och som verktyg inom matematisk logik, men det filosofiska intresset är begränsat. (sv)
  • Форма́льна систе́ма (форма́льна тео́рія, аксіомати́чна тео́рія, англ. formal system) — результат строгої формалізації теорії, яка передбачає повну абстракцію від сенсу слів мови, що використовується, причому всі умови, що регулюють вживання цих слів у теорії, явно висловлено за допомогою аксіом і правил, що дозволяють вивести одну фразу з інших. Формальна система — це сукупність абстрактних об'єктів, не пов'язаних із зовнішнім світом, в якій представлено правила оперування множиною символів у строго синтаксичному трактуванні без врахування смислового змісту, тобто семантики. Строго описані формальні системи з'явилися після того, як було поставлено ​​задачу розв'язності Гільберта. Перші ФС з'явилися після виходу книг Рассела та Вайтгеда «Формальні системи». Цим формальним системам було пред'явлено певні вимоги. (uk)
  • 在邏輯與數學中,一個形式系統(英語:Formal system)是由兩個部分組成的,一個形式语言加上一個推理規則或轉換規則的集合。大衛·希爾伯特在1921年推动以形式系統来描述数学知识。 一個形式系統也許是純粹抽象地制定出來,只是為了研究其自身。另一方面,也可能是為了描述真實現象或客觀現實的領域而設計的。命題邏輯是最简单的形式系統。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 396102 (xsd:integer)
dbo:wikiPageLength
  • 13447 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1071134805 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • 2011-05-24 (xsd:date)
  • September 2017 (en)
dbp:reason
  • This section doesn't really do a group job stating what an entailment actually is. (en)
dbp:url
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Στην λογική, ένα τυπικό σύστημα (formal system), ή λογικό σύστημα (logic system), ή απλά λογική αποτελείται από μια τυπική γλώσσα σε συδυασμό με ένα συμπερασματικό σύστημα, που αποτελείται από ένα σύνολο από συμπερασματικούς κανόνες και/ή αξιώματα. Ένα τυπικό σύστημα χρησιμοποιείται για να μια έκφραση από μια ή περισσότερες άλλες εκφράσεις που διατυπώνονται ως υποθέσεις. Οι εκφράσεις αυτές λέγονται αξιώματα, στην περίπτωση που υποτίθεται ότι είναι αληθείς, ή θεωρήματα, στην περίπτωση που παράγονται. Ένα τυπικό σύστημα μπορεί να διατυπωθεί και να μελετηθεί για τις εγγενείς του ιδιότητες, ή μπορεί να έχει στόχο την περιγραφή εξωτερικών φαινομένων. (el)
  • 형식 체계(形式體系, 영어: formal system)는 공리들로부터 추론 규칙들을 통해 정리를 이끌어낼 수 있는 논리적 체계를 가리킨다. 또한 이를 표기하기 위한 기호들(alphabets)과 그로부터 문장을 구성하기 위한 문법(grammar)을 필요로 한다. 형식체계는 20세기 초 수학기초론을 세우는 과정에서 성립하였으며 현대 기호논리학의 기초적 개념으로 쓰인다. 이를 모든 논리의 기초로 보는 입장을 형식주의(formalism)이라 한다. (ko)
  • Um sistema formal ou sistema lógico é, por assim dizer, qualquer sistema de pensamento abstrato bem definido, em um modelo matemático. Tecnicamente, Os Elementos de Euclides, com um modelo consistindo de 23 definições e 10 postulados/axiomas publicados em 13 livros de teoremas com provas, é frequentemente considerado o primeiro sistema formal e mostra as características de um sistema formal. A implicação de um sistema por sua base lógica é o que distingue o sistema formal de outros que podem ter alguma base em um modelo abstrato. Muitas vezes, o sistema formal será a base, ou será identificado por si só, como uma teoria maior ou um campo consistente com o uso da matemática moderna, como a teoria dos modelos. (pt)
  • 在邏輯與數學中,一個形式系統(英語:Formal system)是由兩個部分組成的,一個形式语言加上一個推理規則或轉換規則的集合。大衛·希爾伯特在1921年推动以形式系統来描述数学知识。 一個形式系統也許是純粹抽象地制定出來,只是為了研究其自身。另一方面,也可能是為了描述真實現象或客觀現實的領域而設計的。命題邏輯是最简单的形式系統。 (zh)
  • يتم تعريف النظام الشكلي بشكل واسع النطاق على أنه أي نظام تفكير تجريدي قائم على نموذج رياضيات. ويتم في الغالب النظر إلى أصول إقليدس على أنها أول نظام شكلي وعلى أنها تعرض سمات النظام الشكلي. وتعد القضية الشرطية للنظام من خلال الأساس المنطقي له هي ما تميز النظام الشكلي عن غيره مما يمكن أن تكون قد أصبحت أسسًا في نموذج تجريدي. وفي الغالب، يكون النظام الشكلي أساسًا لنظرية أكبر أو مجال أكبر ويمكن التعرف عليه من خلالهما (على سبيل المثال هندسة إقليدس) بما يتوافق مع الاستخدام في الرياضيات الحديثة مثل نظرية النموذج. ويجب أن يكون النظام الشكلي رياضيًا، وبالتالي، فإن كتاب علم الأخلاق لسبينوزا على سبيل المثال يقلد شكل أصول إقليدس. (ar)
  • Un sistema formal o axiomàtic és un artifici matemàtic compost de símbols que s'uneixen entre si formant cadenes que, al seu torn, poden ser manipulades segons regles per produir altres cadenes. D'aquesta manera, el sistema formal és capaç de representar cert aspecte de la realitat. El terme «formalisme» s'utilitza, de vegades, com a sinònim de sistema formal, per a un determinat propòsit. Un sistema formal matemàtic consisteix en el següent: (ca)
  • Ein formales System ist ein System von Symbolketten und Regeln. Die Regeln sind Vorschriften für die Umwandlung einer Symbolkette in eine andere, also Produktionen einer formalen Grammatik. Die Anwendung der Regeln kann dabei ohne Kenntnis der Bedeutung der Symbole, also rein syntaktisch erfolgen. Formale Systeme werden in verschiedenen wissenschaftlichen Disziplinen wie der Logik, Mathematik, Informatik und Linguistik verwendet, insbesondere um neue Aussagen aus bereits bekanntem Wissen herzuleiten. (de)
  • A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought. (en)
  • Un sistema formal o sistema lógico es un sistema abstracto compuesto por un lenguaje formal, axiomas, reglas de inferencia y a veces una semántica formal, que se utiliza para deducir o demostrar teoremas y dar una definición rigurosa del concepto de demostración. Un sistema formal es una formalización rigurosa y completa del concepto de sistema axiomático, los cuales se pueden expresar en lenguaje formal o en lenguaje natural formalizado. Al crear un sistema formal se pretende capturar y abstraer la esencia de determinadas características del mundo real, en un modelo conceptual expresado en un determinado lenguaje formal. Algunos de los sistemas formales más conocidos son la lógica proposicional, la lógica de primer orden y la lógica modal. (es)
  • Un système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis…). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif. (fr)
  • 形式体系(けいしきたいけい、Formal System)は、数学のモデルに基づいた任意の well-defined な抽象思考体系と定義される。エウクレイデスの『原論』は史上初の形式体系とされることが多く、形式体系の特徴をよく表している。その論理的基盤による体系の命題と帰結の関係(論理包含)は、他の抽象モデルを何らかの基盤とする体系から形式体系を区別するものである。形式体系は大きな理論や分野(例えばユークリッド幾何学)の基盤またはそのものとなることが多く、現代数学では証明論やモデル理論などと同義に扱われる。ただし形式体系は必ずしも数学的である必然性はなく、例えばスピノザの『エチカ』はエウクレイデスの『原論』の形式を模倣した哲学(倫理学)書である。 形式体系には形式言語があり、その形式言語は基本的な記号(シンボル)で構成される。形式言語の文(式)は公理群を出発点として、所定の構成規則(推論規則)に従って発展する。従って形式体系は基本的な記号群の有限の組み合わせを通して構築された任意個の数式で構成され、その組み合わせは公理群と構成規則群から作り出される。 数学における形式体系は以下の要素から構成される: 形式体系が帰納的であるとは、公理群と推論規則群が(文脈によって)帰納的集合または帰納的可算集合である場合を意味する。 (ja)
  • Een formeel systeem is een combinatie van een formele taal en een verzameling afleidings- of transformatieregels of axioma's die zinnen in de formele taal omzetten in nieuwe zinnen. Formele systemen worden gebruikt als formeel bewijs. Vrijwel alle formele systemen maken gebruik van de axiomatische methode om nieuwe uitdrukkingen af te leiden uit oude die eerder in het systeem zijn uitgedrukt. De oude uitdrukkingen die worden verondersteld waar te zijn worden axioma's genoemd, de nieuwe uitdrukkingen heten stellingen. (nl)
  • System formalny – język formuł (logiki) wraz ze zbiorem (wywodu) i zwykle zbiorem aksjomatów. Systemy formalne są tworzone i badane zarówno jako samodzielne abstrakcyjne twory, jak i systemy opisu rzeczywistości. System formalny w matematyce zawiera następujące elementy: Należy pamiętać, że nawet jeżeli dana formuła jest poprawną formułą systemu, to nie oznacza to, że istnieje procedura decyzyjna określająca, czy jest ona twierdzeniem. (pl)
  • Ett formellt system, även kallat axiomatiskt system, är ursprungligen en symbolisk representation av en matematisk teori. En uppsättning axiom formuleras i ett begränsat symboliskt språk och med hjälp av bestämda härledningsregler kan därefter vissa formler härledas. Sådana härledbara formler kallas teorem. Även axiomen själva räknas som teorem. Inget hindrar att man skapar ett formellt system utan att ha en matematisk teori i åtanke. Det formella systemet har då en närmast kombinatorisk tolkning. Ett exempel på ett sådant system är om man tar följande formler som axiom: 1. * AB 2. * CB (sv)
  • Форма́льна систе́ма (форма́льна тео́рія, аксіомати́чна тео́рія, англ. formal system) — результат строгої формалізації теорії, яка передбачає повну абстракцію від сенсу слів мови, що використовується, причому всі умови, що регулюють вживання цих слів у теорії, явно висловлено за допомогою аксіом і правил, що дозволяють вивести одну фразу з інших. Формальна система — це сукупність абстрактних об'єктів, не пов'язаних із зовнішнім світом, в якій представлено правила оперування множиною символів у строго синтаксичному трактуванні без врахування смислового змісту, тобто семантики. (uk)
rdfs:label
  • نظام شكلي (ar)
  • Sistema formal (ca)
  • Τυπικό σύστημα (el)
  • Formales System (de)
  • Sistema formal (es)
  • Formal system (en)
  • Système formel (fr)
  • 形式体系 (ja)
  • Sistema formale (it)
  • Formeel systeem (nl)
  • 형식 체계 (ko)
  • Sistema formal (pt)
  • System formalny (pl)
  • Formellt system (sv)
  • Формальна система (uk)
  • Формальная система (ru)
  • 形式系統 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License