في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة.

Property Value
dbo:abstract
  • في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة. (ar)
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés. Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres. Il est nommé d’après Pythagore de Samos, philosophe de la Grèce antique. Cependant le résultat était connu plus de mille ans auparavant en Mésopotamie, et, même si les mathématiciens grecs en connaissaient probablement une démonstration avant Euclide, auteur dans ses Éléments de la plus ancienne qui nous soit parvenue, rien ne permet de l'attribuer à Pythagore. Par ailleurs le résultat a vraisemblablement été découvert indépendamment dans plusieurs autres cultures. Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. Divers autres énoncés généralisent le théorème à des triangles quelconques, à des figures de plus grande dimension telles que les tétraèdres, ou en géométrie non euclidienne comme à la surface d’une sphère. Plus généralement, ce théorème a de nombreuses applications dans divers domaines très différents (architecture, ingénierie...), encore aujourd'hui, et a permis nombres d'avancements technologiques à travers l'Histoire. (fr)
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del teorema di Carnot. (it)
  • ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 (ja)
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was. (nl)
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebne źródło] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach. Nie musi być ono prawdziwe dla „rzeczywistych” trójkątów mierzonych we wszechświecie, w geometrii nieeuklidesowej. Jednym z pierwszych matematyków, którzy zdali sobie z tego sprawę był Carl Friedrich Gauss, który bardzo starannie mierzył wielkie trójkąty w swoich badaniach geograficznych, aby sprawdzić prawdziwość twierdzenia. Na powierzchni kuli twierdzenie to nie jest spełnione, gdyż obowiązuje tam geometria sferyczna będąca szczególnym przypadkiem nieeuklidesowej geometrii Riemanna. Ogólna teoria względności mówi, że w polach grawitacyjnych twierdzenie jest fałszywe, gdyż tam także obowiązuje zmodyfikowana geometria Riemanna. Również w olbrzymich skalach kosmicznych to twierdzenie może być nie spełnione w związku z krzywizną przestrzeni w wielkiej skali − problem krzywizny jest jednym z otwartych problemów. (pl)
  • في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة. (ar)
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés. Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres. Il est nommé d’après Pythagore de Samos, philosophe de la Grèce antique. Cependant le résultat était connu plus de mille ans auparavant en Mésopotamie, et, même si les mathématiciens grecs en connaissaient probablement une démonstration avant Euclide, auteur dans ses Éléments de la plus ancienne qui nous soit parvenue, rien ne permet de l'attribuer à Pythagore. Par ailleurs le résultat a vraisemblablement été découvert indépendamment dans plusieurs autres cultures. Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. Divers autres énoncés généralisent le théorème à des triangles quelconques, à des figures de plus grande dimension telles que les tétraèdres, ou en géométrie non euclidienne comme à la surface d’une sphère. Plus généralement, ce théorème a de nombreuses applications dans divers domaines très différents (architecture, ingénierie...), encore aujourd'hui, et a permis nombres d'avancements technologiques à travers l'Histoire. (fr)
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del teorema di Carnot. (it)
  • ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 (ja)
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was. (nl)
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebne źródło] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach. Nie musi być ono prawdziwe dla „rzeczywistych” trójkątów mierzonych we wszechświecie, w geometrii nieeuklidesowej. Jednym z pierwszych matematyków, którzy zdali sobie z tego sprawę był Carl Friedrich Gauss, który bardzo starannie mierzył wielkie trójkąty w swoich badaniach geograficznych, aby sprawdzić prawdziwość twierdzenia. Na powierzchni kuli twierdzenie to nie jest spełnione, gdyż obowiązuje tam geometria sferyczna będąca szczególnym przypadkiem nieeuklidesowej geometrii Riemanna. Ogólna teoria względności mówi, że w polach grawitacyjnych twierdzenie jest fałszywe, gdyż tam także obowiązuje zmodyfikowana geometria Riemanna. Również w olbrzymich skalach kosmicznych to twierdzenie może być nie spełnione w związku z krzywizną przestrzeni w wielkiej skali − problem krzywizny jest jednym z otwartych problemów. (pl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 26513034 (xsd:integer)
dbo:wikiPageRevisionID
  • 708173884 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة. (ar)
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del teorema di Carnot. (it)
  • ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 (ja)
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was. (nl)
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés.Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. (fr)
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebne źródło] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach. (pl)
  • في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة. (ar)
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del teorema di Carnot. (it)
  • ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 (ja)
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was. (nl)
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés.Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. (fr)
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebne źródło] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach. (pl)
rdfs:label
  • نظرية فيثاغورس (ar)
  • Satz des Pythagoras (de)
  • Teorema de Pitágoras (es)
  • Théorème de Pythagore (fr)
  • ピタゴラスの定理 (ja)
  • Teorema di Pitagora (it)
  • Stelling van Pythagoras (nl)
  • Twierdzenie Pitagorasa (pl)
  • Teorema de Pitágoras (pt)
  • Теорема Пифагора (ru)
  • 勾股定理 (zh)
  • Pythagorean theorem (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of