In mathematics, the Pythagorean theorem—or Pythagoras' theorem—is a relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

PropertyValue
dbpedia-owl:abstract
  • مبرهنة فيثاغورس هي مبرهنة في الهندسة الإقليدية، تقول أنه في أي مثلث قائم الزاوية يكون مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة يساوي مربع طول الوتر. سميت هذه المبرهنة على العالم فيثاغورس الذي كان رياضيا، وفيلسوفا، وعالم فلك في اليونان القديمة.
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres. Il est nommé d’après Pythagore de Samos, philosophe de la Grèce antique. Cependant le résultat était connu plus de mille ans auparavant en Mésopotamie, et, même si les mathématiciens grecs en connaissaient probablement une démonstration avant Euclide, auteur dans ses Éléments de la plus ancienne qui nous soit parvenue, rien ne permet de l'attribuer à Pythagore. Par ailleurs le résultat a vraisemblablement été découvert indépendamment dans plusieurs autres cultures.Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème.Divers autres énoncés généralisent le théorème à des triangles quelconques, à des figures de plus grande dimension telles que les tétraèdres, ou en géométrie non euclidienne comme à la surface d’une sphère.
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del Teorema di Carnot.
  • ピタゴラスの定理(ピタゴラスのていり、英語: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、鉤股弦の定理(こうこげんのていり)とも呼ばれる。
  • De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar zij konden ook in algemene termen (abstracties) aantonen waarom de stelling waar was.
  • In mathematics, the Pythagorean theorem—or Pythagoras' theorem—is a relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the Pythagorean equation:where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides.The Pythagorean theorem is named after the Greek mathematician Pythagoras (ca. 570 BC—ca. 495 BC), who by tradition is credited with its proof, although it is often argued that knowledge of the theorem predates him. There is evidence that Babylonian mathematicians understood the formula, although there is little surviving evidence that they used it in a mathematical framework. Also, Mesopotamian, Indian and Chinese mathematicians have all been known for independently discovering the result, some even providing proofs of special cases.The theorem has numerous proofs, possibly the most of any mathematical theorem. These are very diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years. The theorem can be generalized in various ways, including higher-dimensional spaces, to spaces that are not Euclidean, to objects that are not right triangles, and indeed, to objects that are not triangles at all, but n-dimensional solids. The Pythagorean theorem has attracted interest outside mathematics as a symbol of mathematical abstruseness, mystique, or intellectual power; popular references in literature, plays, musicals, songs, stamps and cartoons abound.
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Niemal pewne jest, że znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach.Nie musi być ono prawdziwe dla „rzeczywistych” trójkątów mierzonych we wszechświecie, w geometrii nieeuklidesowej. Jednym z pierwszych matematyków, którzy zdali sobie z tego sprawę był Carl Friedrich Gauss, który bardzo starannie mierzył wielkie trójkąty w swoich badaniach geograficznych, aby sprawdzić prawdziwość twierdzenia. Na powierzchni kuli twierdzenie to nie zachodzi, gdyż obowiązuje tam geometria sferyczna będąca szczególnym przypadkiem nieeuklidesowej geometrii Riemanna. Ogólna teoria względności mówi, że w polach grawitacyjnych twierdzenie jest fałszywe, gdyż tam także obowiązuje zmodyfikowana geometria Riemanna. Również w olbrzymich skalach kosmicznych to twierdzenie może być fałszywe w związku z krzywizną przestrzeni w wielkiej skali − problem krzywizny jest jednym z otwartych problemów.
  • Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
  • 勾股定理又称商高定理、畢達哥拉斯定理,简称“毕氏定理”,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(18541, 12709,13500)。在中国数学史中同样源远流长,是中算的重中之重。《周髀算經》中已有「勾三股四弦五」的记述,赵爽的《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”。古希腊发现勾股定理的是毕达哥拉斯,所以勾股定理又称畢達哥拉斯定理。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝(百牛大祭),因此又稱百牛定理。有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 26513034 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 601641589 (xsd:integer)
dbpprop:hasPhotoCollection
dbpprop:id
  • p/p075940
dbpprop:title
  • Pythagorean theorem
dbpprop:urlname
  • PythagoreanTheorem
dcterms:subject
rdf:type
rdfs:comment
  • مبرهنة فيثاغورس هي مبرهنة في الهندسة الإقليدية، تقول أنه في أي مثلث قائم الزاوية يكون مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة يساوي مربع طول الوتر. سميت هذه المبرهنة على العالم فيثاغورس الذي كان رياضيا، وفيلسوفا، وعالم فلك في اليونان القديمة.
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del Teorema di Carnot.
  • ピタゴラスの定理(ピタゴラスのていり、英語: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、鉤股弦の定理(こうこげんのていり)とも呼ばれる。
  • Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
  • 勾股定理又称商高定理、畢達哥拉斯定理,简称“毕氏定理”,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(18541, 12709,13500)。在中国数学史中同样源远流长,是中算的重中之重。《周髀算經》中已有「勾三股四弦五」的记述,赵爽的《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”。古希腊发现勾股定理的是毕达哥拉斯,所以勾股定理又称畢達哥拉斯定理。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝(百牛大祭),因此又稱百牛定理。有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。
  • In mathematics, the Pythagorean theorem—or Pythagoras' theorem—is a relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres. Il est nommé d’après Pythagore de Samos, philosophe de la Grèce antique.
  • De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan).
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Niemal pewne jest, że znali je przed Pitagorasem starożytni Egipcjanie.
rdfs:label
  • نظرية فيثاغورس
  • Satz des Pythagoras
  • Teorema de Pitágoras
  • Théorème de Pythagore
  • Pythagorean theorem
  • Teorema di Pitagora
  • ピタゴラスの定理
  • Stelling van Pythagoras
  • Twierdzenie Pitagorasa
  • Teorema de Pitágoras
  • Теорема Пифагора
  • 勾股定理
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:knownFor of
is dbpedia-owl:notableIdea of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpprop:knownFor of
is dbpprop:notableIdeas of
is owl:sameAs of
is foaf:primaryTopic of