In mathematics, the Pythagorean theorem — or Pythagoras' theorem — is a relation in Euclidean geometry among the three sides of a right triangle (right-angled triangle). In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

PropertyValue
dbpedia-owl:abstract
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del Teorema di Carnot.
  • ピタゴラスの定理(ピタゴラスのていり、英語: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、鉤股弦の定理(こうこげんのていり)とも呼ばれる。
  • Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
  • Der Satz des Pythagoras ist einer der fundamentalen Sätze der euklidischen Geometrie. Er besagt, dass in allen ebenen rechtwinkligen Dreiecken die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind und die Längen der am rechten Winkel anliegenden Seiten, der Katheten, und die Länge der dem rechten Winkel gegenüberliegenden Seite, der Hypotenuse, dann lautet der Satz als Gleichung ausgedrückt: Der Satz ist nach Pythagoras von Samos benannt, der als erster dafür einen mathematischen Beweis gefunden haben soll, was allerdings in der Forschung umstritten ist. Die Aussage des Satzes war schon lange vor der Zeit Pythagoras’ in Babylon und Indien bekannt, es gibt jedoch keinen Nachweis dafür, dass man dort auch einen Beweis hatte.
  • In mathematics, the Pythagorean theorem — or Pythagoras' theorem — is a relation in Euclidean geometry among the three sides of a right triangle (right-angled triangle). In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle). The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the Pythagorean equation: where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides. The Pythagorean theorem is named after the Greek mathematician Pythagoras (ca. 570 BC—ca. 495 BC), who by tradition is credited with its discovery and proof, although it is often argued that knowledge of the theorem predates him. There is evidence that Babylonian mathematicians understood the formula, although there is little surviving evidence that they used it in a mathematical framework. The theorem has numerous proofs, possibly the most of any mathematical theorem. These are very diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years. The theorem can be generalized in various ways, including higher-dimensional spaces, to spaces that are not Euclidean, to objects that are not right triangles, and indeed, to objects that are not triangles at all, but n-dimensional solids. The Pythagorean theorem has attracted interest outside mathematics as a symbol of mathematical abstruseness, mystique, or intellectual power; popular references in literature, plays, musicals, songs, stamps and cartoons abound.
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres. Il est nommé d’après Pythagore de Samos, mathématicien, philosophe et astronome de la Grèce antique, même si le résultat a vraisemblablement été découvert indépendamment dans plusieurs autres cultures. Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. Divers autres énoncés généralisent le théorème à des triangles quelconques, à des figures de plus grande dimension telles que les tétraèdres, ou en géométrie non euclidienne comme à la surface d’une sphère.
  • De stelling van Pythagoras is een wiskundige stelling, die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar zij konden ook in algemene termen (abstracties) aantonen waarom de stelling waar was.
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, chociaż niemal pewne jest, że znali je przed nim starożytni Egipcjanie. Wiadomo też, że jeszcze przed Pitagorasem znano je w starożytnych Chinach, Indiach i Babilonii. Nie musi być ono prawdziwe dla „rzeczywistych” trójkątów mierzonych we wszechświecie, w geometrii nieeuklidesowej. Jednym z pierwszych matematyków, którzy zdali sobie z tego sprawę był Carl Friedrich Gauss, który bardzo starannie mierzył wielkie trójkąty w swoich badaniach geograficznych, aby sprawdzić prawdziwość twierdzenia. Na powierzchni kuli twierdzenie to nie zachodzi, gdyż obowiązuje tam geometria sferyczna będąca szczególnym przypadkiem nieeuklidesowej geometrii Riemanna. Ogólna teoria względności mówi, że w polach grawitacyjnych twierdzenie jest fałszywe, gdyż tam także obowiązuje zmodyfikowana geometria Riemanna. Również w olbrzymich skalach kosmicznych to twierdzenie może być fałszywe w związku z krzywizną przestrzeni w wielkiej skali − problem krzywizny jest jednym z otwartych problemów.
  • O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que: “ Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos. ” Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam. O enunciado anterior relaciona comprimentos, mas o teorema também pode ser enunciado como uma relação entre áreas: “ Em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos. ” Para ambos os enunciados, pode-se equacionar onde c representa o comprimento da hipotenusa, e a e b representam os comprimentos dos outros dois lados. O teorema de Pitágoras leva o nome do matemático grego Pitágoras (570 a.C. – 495 a.C. ), que tradicionalmente é creditado pela sua descoberta e demonstração, embora seja frequentemente argumentado que o conhecimento do teorema seja anterior a ele (há muitas evidências de que matemáticos babilônicos conheciam algoritmos para calcular os lados em casos específicos, mas não se sabe se conheciam um algoritmo tão geral quanto o teorema de Pitágoras). O teorema de Pitágoras é um caso particular da lei dos cossenos, do matemático persa Ghiyath al-Kashi (1380 – 1429), que permite o cálculo do comprimento do terceiro lado de qualquer triângulo, dados os comprimentos de dois lados e a medida de algum dos três ângulos.
  • Pythagoras sats är en av matematikens mest kända satser. Enligt Pythagoras sats så gäller för en rätvinklig triangels sidor att Kvadraten på hypotenusan är lika med summan av kvadraterna på kateterna. Hypotenusan är den längsta sidan i en rätvinklig triangel och är motstående sida till den räta vinkeln. Katet är benämningen på var och en av de två sidor vilka bildar den räta vinkeln. Pythagoras sats kan också skrivas som Phytagoras ekvation: där a, b och c är sidornas längder för en rätvinklig triangel och c är den längsta sidan. Den grekiske matematikern Pythagoras brukar tillskrivas det första beviset för satsen, men satsen var förmodligen redan tidigare känd i Babylonien.
  • 勾股定理在中国数学史中同样源远流长,是中算的重中之重。《周髀算經》記載了勾股定理的特例(勾三股四弦五),相传是在公元前11世纪商代由商高發現,故又有稱之為商高定理;高商答周公问曰:“勾广三,股备四,径隅五”;三国时代的赵爽对《周髀算經》内的勾股定理作出了详细注释:勾股个自乘,并之,为弦实,开方除之,即弦。《九章算术》卷第九《句股》章详细讨论了勾股定理的运用,魏国数学家刘徽反复运用勾股定理求圆周率,他的的《海岛算经》更进一步将勾股理论发展成为领先世界一千余年的四次勾股重差测量术。 金朝数学家李冶的《测圆海镜》通过勾股容圆图式的十五个勾股形和直径的关系,建立了系統的天元术,推导出692条关于勾股形的各边的公式,从而将勾股问题代数化。 勾股定理又称畢達哥拉斯定理。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝(百牛大祭),因此又稱百牛定理。法国和比利时称为驴桥定理,埃及称为埃及三角形。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 26513034 (xsd:integer)
dbpedia-owl:wikiPageInLinkCount
  • 380 (xsd:integer)
dbpedia-owl:wikiPageOutLinkCount
  • 232 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 547077027 (xsd:integer)
dbpprop:align
  • right
dbpprop:hasPhotoCollection
dbpprop:headerimage
  • 210 (xsd:integer)
dbpprop:id
  • p/p075940
dbpprop:title
  • Pythagorean theorem
dbpprop:urlname
  • PythagoreanTheorem
dbpprop:video
  • Garfield's proof of the Pythagorean Theorem, Khan Academy
  • Bhaskara's proof of Pythagorean Theorem, Khan Academy
dbpprop:width
  • 210 (xsd:integer)
dcterms:subject
rdf:type
rdfs:comment
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, chociaż niemal pewne jest, że znali je przed nim starożytni Egipcjanie. Wiadomo też, że jeszcze przed Pitagorasem znano je w starożytnych Chinach, Indiach i Babilonii.
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del Teorema di Carnot.
  • ピタゴラスの定理(ピタゴラスのていり、英語: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、鉤股弦の定理(こうこげんのていり)とも呼ばれる。
  • Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
  • Der Satz des Pythagoras ist einer der fundamentalen Sätze der euklidischen Geometrie. Er besagt, dass in allen ebenen rechtwinkligen Dreiecken die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist.
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres.
  • In mathematics, the Pythagorean theorem — or Pythagoras' theorem — is a relation in Euclidean geometry among the three sides of a right triangle (right-angled triangle). In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).
  • De stelling van Pythagoras is een wiskundige stelling, die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan).
  • O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que: “ Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos. ” Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam.
  • Pythagoras sats är en av matematikens mest kända satser. Enligt Pythagoras sats så gäller för en rätvinklig triangels sidor att Kvadraten på hypotenusan är lika med summan av kvadraterna på kateterna. Hypotenusan är den längsta sidan i en rätvinklig triangel och är motstående sida till den räta vinkeln. Katet är benämningen på var och en av de två sidor vilka bildar den räta vinkeln.
  • 勾股定理在中国数学史中同样源远流长,是中算的重中之重。《周髀算經》記載了勾股定理的特例(勾三股四弦五),相传是在公元前11世纪商代由商高發現,故又有稱之為商高定理;高商答周公问曰:“勾广三,股备四,径隅五”;三国时代的赵爽对《周髀算經》内的勾股定理作出了详细注释:勾股个自乘,并之,为弦实,开方除之,即弦。《九章算术》卷第九《句股》章详细讨论了勾股定理的运用,魏国数学家刘徽反复运用勾股定理求圆周率,他的的《海岛算经》更进一步将勾股理论发展成为领先世界一千余年的四次勾股重差测量术。 金朝数学家李冶的《测圆海镜》通过勾股容圆图式的十五个勾股形和直径的关系,建立了系統的天元术,推导出692条关于勾股形的各边的公式,从而将勾股问题代数化。 勾股定理又称畢達哥拉斯定理。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝(百牛大祭),因此又稱百牛定理。法国和比利时称为驴桥定理,埃及称为埃及三角形。
rdfs:label
  • 勾股定理
  • Satz des Pythagoras
  • Pythagorean theorem
  • Teorema de Pitágoras
  • Théorème de Pythagore
  • Teorema di Pitagora
  • ピタゴラスの定理
  • Stelling van Pythagoras
  • Twierdzenie Pitagorasa
  • Teorema de Pitágoras
  • Теорема Пифагора
  • Pythagoras sats
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:notableIdea of
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is owl:sameAs of
is foaf:primaryTopic of