In mathematics, the Pythagorean theorem, also known as Pythagoras's theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation": where c represents the length of the hypotenuse and a and b the lengths of the triangle's other two sides.

Property Value
dbo:abstract
  • في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة. (ar)
  • Der Satz des Pythagoras ist einer der fundamentalen Sätze der euklidischen Geometrie. Er besagt, dass in allen ebenen rechtwinkligen Dreiecken die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind und die Längen der am rechten Winkel anliegenden Seiten, der Katheten, und die Länge der dem rechten Winkel gegenüberliegenden Seite, der Hypotenuse, dann lautet der Satz als Gleichung ausgedrückt: Der Satz ist nach Pythagoras von Samos benannt, der als Erster dafür einen mathematischen Beweis gefunden haben soll, was allerdings in der Forschung umstritten ist. Die Aussage des Satzes war schon lange vor der Zeit des Pythagoras in Babylon und Indien bekannt, es gibt jedoch keinen Nachweis dafür, dass man dort auch einen Beweis hatte. (de)
  • Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se formula que: () De la ecuación (1) se deducen fácilmente tres corolarios de verificación algebraica y aplicación práctica: (es)
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés. Ce théorème permet notamment de calculer l’une de ces longueurs à partir des deux autres. Il est nommé d’après Pythagore de Samos, philosophe de la Grèce antique. Cependant le résultat était connu plus de mille ans auparavant en Mésopotamie, et, même si les mathématiciens grecs en connaissaient probablement une démonstration avant Euclide, auteur dans ses Éléments de la plus ancienne qui nous soit parvenue, rien ne permet de l'attribuer à Pythagore. Par ailleurs le résultat a vraisemblablement été découvert indépendamment dans plusieurs autres cultures. Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. Divers autres énoncés généralisent le théorème à des triangles quelconques, à des figures de plus grande dimension telles que les tétraèdres, ou en géométrie non euclidienne comme à la surface d’une sphère. Plus généralement, ce théorème a de nombreuses applications dans divers domaines très différents (architecture, ingénierie...), encore aujourd'hui, et a permis nombres d'avancements technologiques à travers l'Histoire. (fr)
  • ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 (ja)
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was. (nl)
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del teorema di Carnot. (it)
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebny przypis] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach. (pl)
  • O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que: Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam.O enunciado anterior relaciona comprimentos, mas o teorema também pode ser enunciado como uma relação entre áreas: Para ambos os enunciados, pode-se equacionar onde c representa o comprimento da hipotenusa, e a e b representam os comprimentos dos outros dois lados. O teorema de Pitágoras leva o nome do matemático grego Pitágoras (570 a.C. – 495 a.C.), que tradicionalmente é creditado pela sua descoberta e demonstração, embora seja frequentemente argumentado que o conhecimento do teorema seja anterior a ele (há muitas evidências de que matemáticos babilônicos conheciam algoritmos para calcular os lados em casos específicos, mas não se sabe se conheciam um algoritmo tão geral quanto o teorema de Pitágoras). O teorema de Pitágoras é um caso particular da lei dos cossenos, do matemático persa Ghiyath al-Kashi (1380 – 1429), que permite o cálculo do comprimento do terceiro lado de qualquer triângulo, dados os comprimentos de dois lados e a medida de algum dos três ângulos. (pt)
  • Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы. Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору, строгое аксиоматическое доказательство утверждения принадлежит Евклиду. Также может быть выражена как геометрический факт о том, что площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Верно и обратное утверждение: треугольник, сумма квадратов длин двух сторон которого равна квадрату длины третей стороны, является прямоугольным. Существует ряд обобщений для произвольных треугольников, для фигур в пространствах высших размерностей, сводящихся к основному утверждению теоремы при рассмотрении прямоугольного треугольника. В неевклидовых геометриях теорема не выполняется. (ru)
  • 勾股定理(英语:Pythagorean theorem)又称商高定理、畢達哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(18541,12709,13500)。 古希腊发现勾股定理的是毕达哥拉斯,所以勾股定理又称畢達哥拉斯定理。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝(百牛大祭),因此又稱百牛定理。但这个说法显然是以讹传讹,众所周知毕达哥拉斯主义者在古代以素食闻名。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。 (zh)
  • In mathematics, the Pythagorean theorem, also known as Pythagoras's theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation": where c represents the length of the hypotenuse and a and b the lengths of the triangle's other two sides. Although it is often argued that knowledge of the theorem predates him, the theorem is named after the ancient Greek mathematician Pythagoras (c. 570 – c. 495 BC) as it is he who, by tradition, is credited with its first recorded proof. There is some evidence that Babylonian mathematicians understood the formula, although little of it indicates an application within a mathematical framework. Mesopotamian, Indian and Chinese mathematicians all discovered the theorem independently and, in some cases, provided proofs for special cases. The theorem has been given numerous proofs – possibly the most for any mathematical theorem. They are very diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years. The theorem can be generalized in various ways, including higher-dimensional spaces, to spaces that are not Euclidean, to objects that are not right triangles, and indeed, to objects that are not triangles at all, but n-dimensional solids. The Pythagorean theorem has attracted interest outside mathematics as a symbol of mathematical abstruseness, mystique, or intellectual power; popular references in literature, plays, musicals, songs, stamps and cartoons abound. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 26513034 (xsd:integer)
dbo:wikiPageRevisionID
  • 744232842 (xsd:integer)
dbp:id
  • p/p075940
dbp:title
  • Pythagorean theorem
dbp:urlname
  • PythagoreanTheorem
dct:subject
rdf:type
rdfs:comment
  • في الرياضيات، نظرية فيثاغورس أو مبرهنة فيثاغورس (بالإنجليزية: Pythagorean theorem) هي نظرية في الهندسة الإقليدية، تنص على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر. سميت هذه المبرهنة هكذا نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم فلك في اليونان القديمة. (ar)
  • Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se formula que: () De la ecuación (1) se deducen fácilmente tres corolarios de verificación algebraica y aplicación práctica: (es)
  • ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は、直角三角形の3辺の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。 (ja)
  • De stelling van Pythagoras is een wiskundige stelling die haar naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens alleen maar nieuw voor de Grieken. In Soemerië was het resultaat al veel langer bekend, en ook in Babylonië en het oude Egypte werd ze al eerder toegepast (met name de verhouding a=3;b=4;c=5 werd al vroeg gebruikt om rechte hoeken uit te meten, zoals dat tot op de dag van vandaag door sommigen nog wordt gedaan). Echter, belangrijker dan de kennis van de stelling om haar enkel toe te passen, is het leveren van een bewijs. Wat dat betreft waren de Grieken (Pythagoras of een van zijn leerlingen) wel de eersten. Zij wisten niet alleen dat de stelling waar was, maar konden ook in algemene termen (abstracties) aantonen waarom zij waar was. (nl)
  • Il teorema di Pitagora è un teorema della geometria euclidea che stabilisce una relazione fondamentale tra i lati di un triangolo rettangolo ed è una versione limitata ad essi del teorema di Carnot. (it)
  • Twierdzenie Pitagorasa – twierdzenie geometrii euklidesowej dotyczące trójkątów prostokątnych, równoważne w istocie jest piątemu pewnikowi Euklidesa o prostych równoległych. W zachodnioeuropejskim kręgu kulturowym przypisuje się je żyjącemu w VI wieku p.n.e. greckiemu matematykowi i filozofowi Pitagorasowi, jednak odkrycia dokonali Babilończycy, którzy znali dodatkowo dwie prostsze metody, przy których błąd jest niewielki. Zapewne znali je przed Pitagorasem starożytni Egipcjanie. Wiadomo[potrzebny przypis] też, że jeszcze przed nim znano je w starożytnych Chinach i Indiach. (pl)
  • Der Satz des Pythagoras ist einer der fundamentalen Sätze der euklidischen Geometrie. Er besagt, dass in allen ebenen rechtwinkligen Dreiecken die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind und die Längen der am rechten Winkel anliegenden Seiten, der Katheten, und die Länge der dem rechten Winkel gegenüberliegenden Seite, der Hypotenuse, dann lautet der Satz als Gleichung ausgedrückt: (de)
  • Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle : le carré de la longueur de l’hypoténuse, qui est le côté opposé à l'angle droit, est égal à la somme des carrés des longueurs des deux autres côtés. Les premières démonstrations historiques reposent en général sur des méthodes de calcul d’aire par découpage et déplacement de figures géométriques. Inversement, la conception moderne de la géométrie euclidienne est fondée sur une notion de distance qui est définie pour respecter ce théorème. (fr)
  • O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que: Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam.O enunciado anterior relaciona comprimentos, mas o teorema também pode ser enunciado como uma relação entre áreas: Para ambos os enunciados, pode-se equacionar onde c representa o comprimento da hipotenusa, e a e b representam os comprimentos dos outros dois lados. (pt)
  • Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы. Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору, строгое аксиоматическое доказательство утверждения принадлежит Евклиду. (ru)
  • 勾股定理(英语:Pythagorean theorem)又称商高定理、畢達哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(18541,12709,13500)。 (zh)
  • In mathematics, the Pythagorean theorem, also known as Pythagoras's theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the "Pythagorean equation": where c represents the length of the hypotenuse and a and b the lengths of the triangle's other two sides. (en)
rdfs:label
  • نظرية فيثاغورس (ar)
  • Satz des Pythagoras (de)
  • Teorema de Pitágoras (es)
  • Théorème de Pythagore (fr)
  • Teorema di Pitagora (it)
  • ピタゴラスの定理 (ja)
  • Stelling van Pythagoras (nl)
  • Twierdzenie Pitagorasa (pl)
  • Teorema de Pitágoras (pt)
  • Теорема Пифагора (ru)
  • 勾股定理 (zh)
  • Pythagorean theorem (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is rdfs:seeAlso of
is foaf:primaryTopic of