An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Schwarz lantern is a polyhedral approximation to a cylinder, used as a pathological example of the difficulty of defining the area of a smooth (curved) surface as the limit of the areas of polyhedra. It is formed by stacked rings of isosceles triangles, arranged within each ring in the same pattern as an antiprism. The resulting shape can be folded from paper, and is named after mathematician Hermann Schwarz and for its resemblance to a cylindrical paper lantern. It is also known as Schwarz's boot, Schwarz's polyhedron, or the Chinese lantern.

Property Value
dbo:abstract
  • In mathematics, the Schwarz lantern is a polyhedral approximation to a cylinder, used as a pathological example of the difficulty of defining the area of a smooth (curved) surface as the limit of the areas of polyhedra. It is formed by stacked rings of isosceles triangles, arranged within each ring in the same pattern as an antiprism. The resulting shape can be folded from paper, and is named after mathematician Hermann Schwarz and for its resemblance to a cylindrical paper lantern. It is also known as Schwarz's boot, Schwarz's polyhedron, or the Chinese lantern. As Schwarz showed, for the surface area of a polyhedron to converge to the surface area of a curved surface, it is not sufficient to simply increase the number of rings and the number of isosceles triangles per ring. Depending on the relation of the number of rings to the number of triangles per ring, the area of the lantern can converge to the area of the cylinder, to a limit arbitrarily larger than the area of the cylinder, or to infinity—in other words, the area can diverge. The Schwarz lantern demonstrates that sampling a curved surface by close-together points and connecting them by small triangles is inadequate to ensure an accurate approximation of area, in contrast to the accurate approximation of arc length by inscribed polygonal chains. The phenomenon that closely sampled points can lead to inaccurate approximations of area has been called the Schwarz paradox. The Schwarz lantern is an instructive example in calculus and highlights the need for care when choosing a triangulation for applications in computer graphics and the finite element method. (en)
  • Dalam matematika, Lentera Schwarz atau dikenal juga sebagai Bot Schwarz, setelah matematikawan Hermann Schwarz) adalah contoh dari kesulitan menentukan luas bidang (lengkung) permukaan sebagai batas luas polihedra. Permukaan lengkung yang dimaksud adalah bagian dari tabung lingkar kanan. Pendekatan polihedral deskret dianggap memiliki sebagai "irisan" aksial. simpul ditempatkan secara radial di sepanjang setiap irisan pada jarak melingkar pada dari satu orang ke orang lainnya. Yang penting, simpul ditempatkan sehingga bergeser secara bertahap with each slice. Hermann Schwarz menunjukkan hasil penemuan pada tahun 1880 bahwa peningkatan tersebut tidak cukup dan bila kita ingin luas permukaan dari polihedron menyatu dengan luas permukaan dari permukaan lengkung. Tergantung pada hubungan dan luas lentera dapat menyatu dengan luas tabung, hingga batas sewenang-wenang lebih besar dari luas tabung, hingga tak terbatas atau dengan kata lain menyimpang. Jadi, lentera Schwarz menunjukkan bahwa hanya menghubungkan simpul tertulis tidak cukup untuk memastikan konvergensi luas permukaan. Permukaan polihedral memiliki kemiripan dengan pada tabung. Jumlah sudut di setiap titik sama dengan dua sudut datar ( radian). Konsekuensinya, lentera Schwarz dapat dilipat dari selembar kertas datar. (in)
  • Сапог Шварца (от нем. Schwarzscher Stiefel) — семейство приближений кругового цилиндра с помощью полиэдральных поверхностей. Предельная площадь этих приближений может быть сделана произвольно большой.Эта конструкция позволяет увидеть несостоятельность определения площади поверхности как точной верхней грани площадей вписанных в неё полиэдральных поверхностей, в противоположность тому, что длина кривой может быть определена как точная верхняя грань длин вписанных в неё ломаных. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 58278053 (xsd:integer)
dbo:wikiPageLength
  • 24600 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1096031131 (xsd:integer)
dbo:wikiPageWikiLink
dbp:caption
  • Detail of a boot from the painting Saint Florian by Francesco del Cossa, showing Yoshimura buckling (en)
  • Origami crease pattern for a Schwarz lantern with and (en)
dbp:image
  • Francesco del Cossa - Griffoni Polyptych - Saint Florian 1.jpg (en)
  • Schwarz lantern crease pattern.svg (en)
dbp:totalWidth
  • 480 (xsd:integer)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Сапог Шварца (от нем. Schwarzscher Stiefel) — семейство приближений кругового цилиндра с помощью полиэдральных поверхностей. Предельная площадь этих приближений может быть сделана произвольно большой.Эта конструкция позволяет увидеть несостоятельность определения площади поверхности как точной верхней грани площадей вписанных в неё полиэдральных поверхностей, в противоположность тому, что длина кривой может быть определена как точная верхняя грань длин вписанных в неё ломаных. (ru)
  • Dalam matematika, Lentera Schwarz atau dikenal juga sebagai Bot Schwarz, setelah matematikawan Hermann Schwarz) adalah contoh dari kesulitan menentukan luas bidang (lengkung) permukaan sebagai batas luas polihedra. Permukaan lengkung yang dimaksud adalah bagian dari tabung lingkar kanan. Pendekatan polihedral deskret dianggap memiliki sebagai "irisan" aksial. simpul ditempatkan secara radial di sepanjang setiap irisan pada jarak melingkar pada dari satu orang ke orang lainnya. Yang penting, simpul ditempatkan sehingga bergeser secara bertahap with each slice. (in)
  • In mathematics, the Schwarz lantern is a polyhedral approximation to a cylinder, used as a pathological example of the difficulty of defining the area of a smooth (curved) surface as the limit of the areas of polyhedra. It is formed by stacked rings of isosceles triangles, arranged within each ring in the same pattern as an antiprism. The resulting shape can be folded from paper, and is named after mathematician Hermann Schwarz and for its resemblance to a cylindrical paper lantern. It is also known as Schwarz's boot, Schwarz's polyhedron, or the Chinese lantern. (en)
rdfs:label
  • Lentera Schwarz (in)
  • Schwarz lantern (en)
  • Сапог Шварца (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License