Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) "knowledge of nature", from φύσις phúsis "nature") is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force. One of the most fundamental scientific disciplines, the main goal of physics is to understand how the universe behaves.

Property Value
dbo:abstract
  • Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) "knowledge of nature", from φύσις phúsis "nature") is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force. One of the most fundamental scientific disciplines, the main goal of physics is to understand how the universe behaves. Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, biology, and certain branches of mathematics, but during the scientific revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences while opening new avenues of research in areas such as mathematics and philosophy. Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products that have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization, and advances in mechanics inspired the development of calculus. (en)
  • الفيزياء (من الإغريقية φυσική ‏/fi.si.ˈki/ "(المعرفة) الطبيعية"، وبالعربية علم الطبيعة، وتسمّى أحياناً الفيزيقا) هي العلم الذي يدرس كل ما يتعلق بالمادة و حركتها و الطاقة، وتحاول أن تفهم الظواهر الطبيعية والقوى والحركة المؤثرة في سيرها، وصياغة المعرفة في قوانين لا تفسر العمليات السالفة فقط بل التنبؤ بمسيرة العمليات الطبيعية بنماذج تقترب رويدا رويدا من الواقع. تهتم الفيزياء في نفس الوقت بدقة القياس وابتكار طرق جديدة للقياس تزيد من دقتها؛ فهذا هو أساس التوصل إلى التفسير السليم للظواهر الطبيعية. وتقدم الفيزياء ما توصلت إليه من طرق القياس للاستخدام في جميع العلوم الطبيعية والحيوية الأخرى كالكيمياء و الطب و الهندسة و الأحياء وغيرها. إن التقدم الحضاري والمدني يدين بشكل كبيرللتقدم الباهر لعلم الفيزياء، فجميع الأجهزة التي تملأ حياتنا اليومية أساسها الفيزياء، مثل الرادار و اللاسلكي و الراديو والتلفزيون و التلفزيون الملون، والهاتف، والمحمول و الحاسوب وأجهزة التشخيص في الطب مثل أشعة إكس و التصوير بالرنين المغناطيسي والعلاج بالأشعة، والنظارات، والتلسكوبات ومسبارات المريخ والفضاء، و أفران الميكروويف، و الكهرباء و الترانزيستور والميكروفون، وغيرها.بالإضافة إلى مفاهيم أخرى كالفضاء والزمن، ويتعامل مع خصائص كونية محسوسة يمكن قياسها مثل القوة والطاقة والكتلة والشحنة. وتعتمد الفيزياء المنهج التجريبي، أي أنها تحاول تفسير الظواهر الطبيعية والقوانين التي تحكم الكون عن طريق نظريات قابلة للاختبار. تعتبر الفيزياء من أحد أقدم التّخصصات الأكاديمية، فهي قد بدأت بالبزوغ منذ العصور الوسطى وتميزت كعلم حديث في القرن السابع عشر، وباعتبار أن أحد فروعها، وهو علم الفلك، يعد من أعرق العلوم الكونية على الإطلاق. وللفيزياء مكانة متميزة في الفكر الإنساني، وكما تأثرت بأفرع المعرفة الإنسانية الأخرى؛ فقد كان لها أيضا الأثر الحاسم في بعض الحقول المعرفية والعلمية الأخرى مثل الفلسفة والرياضيات وعلم الأحياء. ولقد تجسدت أغلب التّطورات التي أحدثتها بشكل عملي في عدّة قطاعات من التقنية والطب. فعلى سبيل المثال، أدى التّقدم في فهم الكهرومغناطيسية إلى الانتشار الواسع في استخدام الأجهزة الكهربائية مثل التلفاز والحاسوب،وكذلك تطبيقات الديناميكا الحرارية إلى التطور المذهل في مجال المحركات ووسائل النقل الحديثة، وميكانيكا الكم إلى اختراع معدات مثل المجهر الإلكتروني، كما كان لعصر الذرة - بجانب آثاره المدمرة - استعمالات هامة لتطويع الإشعاع في علاج السرطان وتشخيص الأمراض. معظم الفيزيائيين اليوم هم عادة متخصصون في مجالين متكاملين وهما الفيزياء النظرية و الفيزياء التجريبية، وتهتم الأولى بصياغة النظريات باعتماد نماذج رياضية، فيما تهتم الثانية بإجراء الاختبارات على تلك النظريات، بالإضافة إلى اكتشاف ظواهر طبيعية جديدة. وبالرغم من الكم الهائل من الاكتشافات المهمّة التي حققتها الفيزياء في القرون الأربعة الماضية، إلا أن العديد من المسائل لا تزال بدون جواب إلى حد الآن، كما أن هناك مجالات نظرية وتطبيقية تشهد نشاطًا وأبحاثًا مكثّفة. هناك اعتقاد بأن "الفيزياء فرع من فروع الرياضيات" وهو اعتقاد خاطئ تمامًا، لأن النماذج الرياضية تستعمل في علم الفيزياء فقط لتسهيل فهم الظواهر الفيزيائية والتعبير عنها في صورة معادلة رياضية كما في الفيزياء النظرية. كما أن مضامين النماذج الرياضية في أي علم من العلوم الطبيعية لا يتدخل في شأنها علم الرياضيات، فالمعادلة الفيزيائية الرياضية هي لغة الفيزياء. فالفيزياء علم مستقل بذاته.وللفيزياء عدة فروع مثل الفيزياء الذرية، الفيزياء النووية، النظرية النسبية، البصريات، الصوتيات، الكهربية، المغناطيسية، الديناميكا الحرارية، الميكانيكا، ميكانيكا الكم،... إلخ. وبالرغم من أن علم الفلك يقوم بدراسة الأجسام السماوية إلا أنه يعد أحد فروع الفيزياء. (ar)
  • Die Physik (über lateinisch physica ‚Naturlehre‘ aus griechisch φυσική physikē ‚wissenschaftliche Erforschung der Naturerscheinungen‘, ‚Naturforschung‘) ist eine Naturwissenschaft und untersucht die grundlegenden Phänomene in der Natur. Um deren Eigenschaften und Verhalten anhand von quantitativen Modellen und Gesetzmäßigkeiten zu erklären, befasst sie sich insbesondere mit Materie und Energie und deren Wechselwirkungen in Raum und Zeit. Erklären bedeutet hier einordnen, vergleichen, allgemeineren Erscheinungen zuordnen oder aus allgemeiner gültigen Naturgesetzen folgern. Dazu ist häufig die Bildung geeigneter neuer Begriffe nötig, z. T. auch solchen, die der unmittelbaren Anschauung nicht mehr zugänglich sind. Erklärungen in dem philosophischen Sinn, „warum“ die Natur sich so und nicht anders verhält, kann die Physik nicht leisten. Die Arbeitsweise der Physik besteht in einem Zusammenspiel experimenteller Methoden und theoretischer Modellbildung. Physikalische Theorien bewähren sich in der Anwendung auf Systeme der Natur, indem sie bei Kenntnis von deren Anfangszuständen möglichst genaue Vorhersagen über spätere Zustände erlauben. Erkenntnisfortschritte ergeben sich durch das Wechselspiel von Beobachtung bzw. Experiment mit der Theorie. Eine neue oder weiterentwickelte Theorie kann bekannte Ergebnisse besser oder überhaupt erstmals erklären und darüber hinaus neue Experimente und Beobachtungen anregen, deren Ergebnisse dann die Theorie bestätigen oder ihr widersprechen. Unerwartete Beobachtungs- oder Versuchsergebnisse geben Anlass zur Theorieentwicklung in verschiedener Gestalt, von schrittweiser Verbesserung bis hin zur völligen Aufgabe einer lange Zeit akzeptierten Theorie. Erkenntnisfortschritte führen beispielsweise zur Ausdehnung oder Einschränkung des Gültigkeitsbereichs einer Theorie, zu genaueren Beschreibungen, Vereinfachungen des theoretischen Apparats oder zu neuen oder erleichterten praktischen Anwendungen. Erkenntnisse und Modelle aus der Physik werden intensiv in der Chemie, Geologie, Biologie, Medizin und vielen Ingenieurwissenschaften genutzt, in neuerer Zeit in auch in Zweigen der Sozialwissenschaften und Wirtschaftswissenschaften. (de)
  • La física (del lat. physica, y este del gr. τὰ φυσικά, neutro plural de φυσικός, 'natural, relativo a la naturaleza') es la ciencia natural que estudia las propiedades, el comportamiento de la energía, la materia (y cambios en ella que no alteren la naturaleza de la misma), el tiempo y el espacio, así como las interacciones de estos cuatro conceptos entre sí. La física es una de las más antiguas disciplinas académicas, tal vez la más antigua, ya que la astronomía es una de sus disciplinas. En los últimos dos milenios, la física fue considerada parte de lo que ahora llamamos filosofía, química, y ciertas ramas de la matemática y la biología, pero durante la Revolución Científica en el siglo XVII surgió para convertirse en una ciencia moderna, única por derecho propio. Sin embargo, en algunas esferas como la física matemática y la química cuántica, los límites de la física siguen siendo difíciles de distinguir. Esta disciplina incentiva competencias, métodos y una cultura científica que permiten comprender nuestro mundo físico y viviente, para luego actuar sobre él. Sus procesos cognitivos se han convertido en protagonistas del saber y hacer científico y tecnológico general, ayudando a conocer, teorizar, experimentar y evaluar actos dentro de diversos sistemas, clarificando causa y efecto en numerosos fenómenos. De esta manera, la física contribuye a la conservación y preservación de recursos, facilitando la toma de conciencia y la participación efectiva y sostenida de la sociedad en la resolución de sus propios problemas. La física es significativa e influyente, no sólo debido a que los avances en la comprensión a menudo se han traducido en nuevas tecnologías, sino también a que las nuevas ideas en la física resuenan con las demás ciencias, las matemáticas y la filosofía. La física no es sólo una ciencia teórica; es también una ciencia experimental. Como toda ciencia, busca que sus conclusiones puedan ser verificables mediante experimentos y que la teoría pueda realizar predicciones de experimentos futuros basados en observaciones previas. Dada la amplitud del campo de estudio de la física, así como su desarrollo histórico con relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la química, la biología y la electrónica, además de explicar sus fenómenos. La física, en su intento de describir los fenómenos naturales con exactitud y veracidad, ha llegado a límites impensables: el conocimiento actual abarca la descripción de partículas fundamentales microscópicas, el nacimiento de las estrellas en el universo e incluso conocer con una gran probabilidad lo que aconteció en los primeros instantes del nacimiento de nuestro universo, por citar unos pocos campos. Esta tarea comenzó hace más de dos mil años con los primeros trabajos de filósofos griegos como Demócrito, Eratóstenes, Aristarco, Epicuro o Aristóteles, y fue continuada después por científicos como Galileo Galilei, Isaac Newton, Leonhard Euler, Joseph-Louis de Lagrange, Michael Faraday, William Rowan Hamilton, Rudolf Clausius, James Clerk Maxwell, Hendrik Antoon Lorentz, Albert Einstein, Niels Bohr, Max Planck, Werner Heisenberg, Paul Dirac, Richard Feynman, Stephen Hawking, Edward Witten, entre muchos otros. (es)
  • La physique est la science qui tente de comprendre, de modéliser, voire d'expliquer les phénomènes naturels de l'univers. Elle correspond à l'étude du monde qui nous entoure sous toutes ses formes, des lois de sa variation et de son évolution. La modélisation des systèmes peut laisser de côté les processus chimiques et biologiques ou les inclure. La physique développe des représentations du monde expérimentalement vérifiables dans un domaine de définition donné. Elle produit donc plusieurs lectures du monde, chacune n'étant considérée comme précise que jusqu'à un certain point. La physique telle que conceptualisée par Isaac Newton, aujourd’hui dénommé physique classique, butait sur l'explication de phénomènes naturels comme le rayonnement du corps noir (catastrophe ultraviolette) ou les anomalies de l’orbite de la planète Mercure, ce qui posait un réel problème aux physiciens. Les tentatives effectuées pour comprendre et modéliser les phénomènes nouveaux auxquels on accédait à la fin du XIXe siècle révisèrent en profondeur le modèle newtonien pour donner naissance à deux nouveaux ensembles de théories physiques. Certains diront qu'il existe donc trois ensembles de théories physiques établies, chacune valide dans le domaine d’applications qui lui est propre : * La physique classique (monde des milieux solides, liquides et gazeux), toujours d'actualité, c'est elle qui s’applique, par exemple, à la construction des routes, des ponts et des avions. Elle utilise les anciennes notions de temps, d'espace, de matière et d'énergie telles que définies par Isaac Newton ; * La physique quantique (monde microscopique des particules et des champs) qui s’applique, par exemple, à la technologie utilisée pour la production des composants électroniques (la diode à effet tunnel par exemple) ou encore aux lasers. Elle se fonde sur de nouvelles définitions de l'énergie et de la matière mais conserve les anciennes notions de temps et d'espace de la physique classique, ces deux dernières étant contredites par la relativité générale. La physique quantique n'a jamais été prise en défaut à ce jour ; * La relativité générale (monde macroscopique des planètes, des trous noirs et de la gravité) qui s’applique, par exemple, à la mise au point et au traitement de l'information nécessaire au fonctionnement des systèmes GPS. Elle se fonde sur de nouvelles définitions du temps et de l'espace mais conserve les anciennes notions d'énergie et de matière de la physique classique, ces deux dernières étant contredites par la physique quantique. La relativité générale n'a jamais été prise en défaut à ce jour. D'autres estiment que chaque branche de la physique a son importance à part entière, sans forcément s'inclure dans l'un de ces ensembles. De plus, il se trouve qu'il n'y a pas de situation physique courante où ces deux dernières théories s'appliquent en même temps. La relativité s'applique au monde macroscopique et la physique quantique au monde microscopique. Le problème actuel de la recherche en physique fondamentale est donc de tenter d'unifier ces deux dernières théories (voir Gravité quantique). Les divisions anciennes en vigueur à la fin du 19e Siècle : mécanique, calorique, acoustique, optique, électricité, magnétisme sont complétées ou remplacées par : * la taille des éléments de structure au centre de la modélisation : particules élémentaires, noyaux atomiques, atomes, molécules, macromolécules ou polymères, grains de matière… * les caractères des interactions à l'origine des phases ou états de la matière : plasma, fluide supercritique, gaz, liquide, solide. La physique classique est fondée sur des théories antérieures à la relativité et aux quanta. Elle s'applique lorsque : * soit la vitesse est très inférieure à la célérité de la lumière dans le vide ; * soit la discontinuité des niveaux d'énergie est impossible à mettre en évidence. La physique est née avec les expériences répétées de Galilée qui n'accepte, au-delà des principes et des conventions issus des schémas mathématiques, que des résultats mesurables et reproductibles par l'expérience. La méthode choisie permet de confirmer ou d'infirmer les hypothèses fondées sur une théorie donnée. Elle décrit de façon quantitative et modélise les êtres fondamentaux présents dans l'univers, cherche à décrire le mouvement par les forces qui s'y exercent et leurs effets. Elle développe des théories en utilisant l'outil des mathématiques pour décrire et prévoir l'évolution de systèmes. (fr)
  • 物理学(ぶつりがく、英: physics)は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 (φύσις physis) にその源があり、"physics"という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の、物理現象のみを追求する"physics"として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。 (ja)
  • De natuurkunde of fysica is van oorsprong de tak van wetenschap die algemene eigenschappen van materie, straling en energie onderzoekt en beschrijft, zoals kracht, evenwicht en beweging, fasen en faseovergangen, straling, warmte, licht, geluid, magnetisme en elektriciteit, voor zover hierbij geen scheikundige veranderingen optreden. Dit wil zeggen dat de moleculaire samenstelling van stoffen niet verandert. Zoals de meeste natuurwetenschappen wordt de natuurkunde beoefend in een wisselwerking tussen theorie en experiment (de zogenaamde wetenschappelijke methode), waarbij theorieën leiden tot experimenten, experimenten kunnen dienen als inspiratie of aanwijzingen voor theorieën, en die theorieën weer kunnen worden getoetst aan experimenten. Natuurkundige theorieën kunnen zeer ingewikkeld worden, hoewel er in beginsel gestreefd wordt naar eenvoud. Een uitspraak van Albert Einstein luidt, dat een verklaring "zo eenvoudig mogelijk" moet zijn, "maar niet eenvoudiger", dus niet ten koste van de juistheid. Er bestaan vele vakgebieden en specialisaties binnen de natuurkunde, die wel raakvlakken met elkaar hebben, zoals de optica en het elektromagnetisme, de geofysica en de seismiek. Ontdekkingen in één discipline kunnen grote gevolgen hebben voor andere disciplines. Methoden en technieken uit de natuurkunde blijken verder binnen vele andere wetenschapsgebieden toepasbaar te zijn. (nl)
  • La fisica è la scienza della natura nel senso più ampio. Il termine "fisica" deriva dal neutro plurale latino physica, a sua volta derivante dal greco τὰ φυσικά [tà physiká], ovvero "le cose naturali" e da φύσις [physis], "natura". Lo scopo della fisica è lo studio dei fenomeni naturali, ossia di tutti gli eventi che possano essere descritti ovvero quantificati attraverso grandezze fisiche opportune, al fine di stabilire principi e leggi che regolano le interazioni tra le grandezze stesse e rendano conto delle loro reciproche variazioni. Quest'obiettivo è raggiunto attraverso l'applicazione rigorosa del metodo scientifico, il cui scopo ultimo è fornire uno schema semplificato, o modello, del fenomeno descritto. L'insieme di principi e leggi fisiche relative ad una certa classe di fenomeni osservati definiscono una teoria fisica deduttiva, coerente e relativamente autoconsistente, costruita tipicamente a partire dall'induzione sperimentale. (it)
  • Fizyka (z stgr. φύσις physis – "natura") – nauka przyrodnicza zajmująca się badaniem właściwości i przemian materii i energii oraz oddziaływań między nimi. Do opisu zjawisk fizycznych fizycy używają wielkości fizycznych, wyrażonych za pomocą pojęć matematycznych, takich jak liczba, wektor, tensor. Tworząc hipotezy i teorie fizyki, budują relacje pomiędzy wielkościami fizycznymi. Z fizyką ściśle wiążą się inne nauki przyrodnicze, szczególnie chemia. Chemicy przyjmują teorie fizyki dotyczące cząsteczek i związków chemicznych (mechanika kwantowa, termodynamika) i za ich pomocą tworzą teorie w ich własnych dziedzinach badań. Fizyka zajmuje szczególne miejsce w naukach przyrodniczych, ponieważ wyjaśnia podstawowe zależności obowiązujące w przyrodzie. (pl)
  • Física (do grego antigo: φύσις physis "natureza") é a ciência que estuda a natureza e seus fenômenos em seus aspectos mais gerais. Analisa suas relações e propriedades, além de descrever e explicar a maior parte de suas consequências. Busca a compreensão científica dos comportamentos naturais e gerais do mundo em nosso torno, desde as partículas elementares até o universo como um todo. Com o amparo do método científico e da lógica, e tendo a matemática como linguagem natural, esta ciência descreve a natureza através de modelos científicos. É considerada a ciência fundamental, sinônimo de ciência natural: as ciências naturais, como a química e a biologia, têm raízes na física. Sua presença no cotidiano é muito ampla, sendo praticamente impossível uma completíssima descrição dos fenômenos físicos em nossa volta. A aplicação da física para o benefício humano contribuiu de uma forma inestimável para o desenvolvimento de toda a tecnologia moderna, desde o automóvel até os computadores quânticos. Historicamente, a afirmação da física como ciência moderna está intimamente ligada ao desenvolvimento da mecânica, que tem como pilares principais de estudo a energia mecânica e os momentos linear e angular, suas conservações e variações. Desde o fim da Idade Média havia a necessidade de se entender a mecânica, e os conhecimentos da época, sobretudo aristotélicos, já não eram mais suficientes. Galileu centrou seus estudos dos projéteis, dos pêndulos e nos movimentos dos planetas, e Isaac Newton elaborou mais tarde os princípios fundamentais da dinâmica ao publicar suas leis e a gravitação universal em seu livro Principia, que se tornou a obra científica mais influente de todos os tempos. A termodinâmica, que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume em escala macroscópica, teve sua origem na invenção das máquinas térmicas durante o século XVIII. Seus estudos levaram à generalização do conceito de energia. A ligação da eletricidade, que estuda cargas elétricas, com o magnetismo, que é os estudo das propriedades relacionadas aos ímãs, foi percebida apenas no início do século XIX por Hans Christian Ørsted. As descrições físicas e matemáticas da eletricidade e magnetismo foram unificadas por James Clerk Maxwell, e a partir de então estas duas áreas, juntamente com a óptica, passaram a ser tratadas como visões diferentes do mesmo fenômeno físico, o eletromagnetismo. No início do século XX, a incapacidade da descrição e explicação de certos fenômenos observados, como o efeito fotoelétrico, levantou a necessidade de abrir novos horizontes para a física. Albert Einstein publicou a teoria da relatividade geral em 1915, afirmando a constância da velocidade da luz e suas consequências até então imagináveis. A teoria da relatividade de Einstein leva a um dos princípios de conservação mais importantes da física, a relação entre massa e energia, expressa pela famosa equação E=mc². A relatividade geral também unifica os conceitos de espaço e tempo: a gravidade é apenas uma consequência da deformação do espaço-tempo causado pela presença de massa. Max Planck, ao estudar a radiação de corpo negro, foi forçado a concluir que a energia está dividida em "pacotes", conhecidos como quanta. Einstein demonstrou fisicamente as ideias de Planck, fixando as primeiras raízes da mecânica quântica. O desenvolvimento da teoria quântica de campos trouxe uma nova visão da mecânica das forças fundamentais. O surgimento da eletro e cromodinâmica quântica e a posterior unificação do eletromagnetismo com a força fraca a altas energias são a base do modelo padrão, a principal teoria de partículas subatômicas e capaz de descrever a maioria dos fenômenos da escala microscópica que afetam as principais áreas da física. A física é uma ciência significativa e influente e suas evoluções são frequentemente traduzidas no desenvolvimento de novas tecnologias. O avanço nos conhecimentos em eletromagnetismo permitiu o desenvolvimento de tecnologias que certamente influenciam o cotidiano da sociedade moderna: o domínio da energia elétrica permitiu o desenvolvimento e construção dos aparelhos elétricos; o domínio sobre as radiações eletromagnéticas e o controle refinado das correntes elétricas permitiu o surgimento da eletrônica e o consequente desenvolvimento das telecomunicações globais e da informática, que são indissociáveis da definição de sociedade civilizada contemporânea. O desenvolvimento dos conhecimentos em termodinâmica permitiu que o transporte deixasse de ser dependente da força animal ou humana graças ao advento dos motores térmicos, que também impulsionou toda uma Revolução Industrial. Nada disso seria possível, entretanto, sem o desenvolvimento da mecânica, que tem suas raízes ligadas ao próprio desenvolvimento da física. Porém, como qualquer outra ciência, a física não é estática. Físicos ainda trabalham para conseguir resolver problemas de ordem teórica, como a catástrofe do vácuo, gravitação quântica, termodinâmica de buracos negros, dimensões suplementares, flecha do tempo, inflação cósmica e o mecanismo de Higgs, que prevê a existência do bóson de Higgs, a única partícula ainda não descoberta do modelo padrão que explicaria a massa das partículas subatômicas. Ainda existem fenômenos observados empiricamente e experimentalmente que ainda carecem de explicações científicas, como a possível existência da matéria escura, raios cósmicos com energias teoricamente muito altas e até mesmo observações cotidianas como a turbulência. Para tal, equipamentos sofisticadíssimos foram construídos, como o Large Hadron Collider, o maior acelerador de partículas já construído do mundo, situado na Organização Europeia para a Investigação Nuclear (CERN). (pt)
  • Фи́зика (от др.-греч. φύσις — природа) — область естествознания: наука о простейших и, вместе с тем, наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания. Термин «физика» впервые фигурирует в сочинениях одного из величайших мыслителей древности — Аристотеля (IV век до нашей эры). Первоначально термины «физика» и «философия» были синонимами, так как в основе обеих дисциплин лежало стремление объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика развилась в самостоятельную научную отрасль. В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров. Развитие фотоники способно дать возможность создать принципиально новые — фотонные — компьютеры и другую фотонную технику, которые сменят существующую электронную технику.Развитие газодинамики привело к появлению самолётов и вертолётов. Знания физики процессов, происходящих в природе, постоянно расширяются и углубляются. Большинство новых открытий вскоре получают технико-экономическое применение (в частности в промышленности). Однако перед исследователями постоянно встают новые загадки, — обнаруживаются явления, для объяснения и понимания которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы. Общенаучные основы физических методов разрабатываются в теории познания и методологии науки. В русский язык слово «физика» было введено М. В. Ломоносовым, издавшим первый в России учебник физики — свой перевод с немецкого языка учебника «Вольфианская экспериментальная физика» Х. Вольфа (1746). Первым оригинальным учебником физики на русском языке стал курс «Краткое начертание физики» (1810), написанный П. И. Страховым. (ru)
  • 物理學是一門自然科學,注重于研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關係。物理學是關於大自然規律的知識;更廣義地說,物理學從探索分析大自然的現象來找出其中的主導規則。 物理學是最古老的學術之一。十七世紀歐洲的科學革命之前,物理學與化學、天文學都被歸屬於自然哲學的範疇,由於科學革命,物理學才從自然哲學中獨立出來,成為了一門自然科學。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 物理學是自然科學中最基礎的學科之一。經過嚴謹思考論證,物理學者會提出表述大自然現象與規律的假说,倘若這假说能夠通過大量嚴格的實驗檢驗,則可以被歸類為物理定律,但正如很多其他自然科學理論一樣,這些定律不能被證明,其正確性只能靠著反覆實驗來檢驗。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速進展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電不再是藍圖構想,但引致的安全問題也使人們意識到地球的脆弱。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 22939 (xsd:integer)
dbo:wikiPageRevisionID
  • 744915263 (xsd:integer)
dbp:date
  • 20090826083339 (xsd:double)
dbp:title
  • Historic Papers in Physics
dbp:url
  • http://home.tiscali.nl/physis/HistoricPaper/
dct:subject
rdf:type
rdfs:comment
  • 物理学(ぶつりがく、英: physics)は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 (φύσις physis) にその源があり、"physics"という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の、物理現象のみを追求する"physics"として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。 (ja)
  • 物理學是一門自然科學,注重于研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關係。物理學是關於大自然規律的知識;更廣義地說,物理學從探索分析大自然的現象來找出其中的主導規則。 物理學是最古老的學術之一。十七世紀歐洲的科學革命之前,物理學與化學、天文學都被歸屬於自然哲學的範疇,由於科學革命,物理學才從自然哲學中獨立出來,成為了一門自然科學。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 物理學是自然科學中最基礎的學科之一。經過嚴謹思考論證,物理學者會提出表述大自然現象與規律的假说,倘若這假说能夠通過大量嚴格的實驗檢驗,則可以被歸類為物理定律,但正如很多其他自然科學理論一樣,這些定律不能被證明,其正確性只能靠著反覆實驗來檢驗。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速進展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電不再是藍圖構想,但引致的安全問題也使人們意識到地球的脆弱。 (zh)
  • Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) "knowledge of nature", from φύσις phúsis "nature") is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force. One of the most fundamental scientific disciplines, the main goal of physics is to understand how the universe behaves. (en)
  • الفيزياء (من الإغريقية φυσική ‏/fi.si.ˈki/ "(المعرفة) الطبيعية"، وبالعربية علم الطبيعة، وتسمّى أحياناً الفيزيقا) هي العلم الذي يدرس كل ما يتعلق بالمادة و حركتها و الطاقة، وتحاول أن تفهم الظواهر الطبيعية والقوى والحركة المؤثرة في سيرها، وصياغة المعرفة في قوانين لا تفسر العمليات السالفة فقط بل التنبؤ بمسيرة العمليات الطبيعية بنماذج تقترب رويدا رويدا من الواقع. تعتبر الفيزياء من أحد أقدم التّخصصات الأكاديمية، فهي قد بدأت بالبزوغ منذ العصور الوسطى وتميزت كعلم حديث في القرن السابع عشر، وباعتبار أن أحد فروعها، وهو علم الفلك، يعد من أعرق العلوم الكونية على الإطلاق. (ar)
  • Die Physik (über lateinisch physica ‚Naturlehre‘ aus griechisch φυσική physikē ‚wissenschaftliche Erforschung der Naturerscheinungen‘, ‚Naturforschung‘) ist eine Naturwissenschaft und untersucht die grundlegenden Phänomene in der Natur. Um deren Eigenschaften und Verhalten anhand von quantitativen Modellen und Gesetzmäßigkeiten zu erklären, befasst sie sich insbesondere mit Materie und Energie und deren Wechselwirkungen in Raum und Zeit. Erklären bedeutet hier einordnen, vergleichen, allgemeineren Erscheinungen zuordnen oder aus allgemeiner gültigen Naturgesetzen folgern. Dazu ist häufig die Bildung geeigneter neuer Begriffe nötig, z. T. auch solchen, die der unmittelbaren Anschauung nicht mehr zugänglich sind. Erklärungen in dem philosophischen Sinn, „warum“ die Natur sich so und nicht an (de)
  • La física (del lat. physica, y este del gr. τὰ φυσικά, neutro plural de φυσικός, 'natural, relativo a la naturaleza') es la ciencia natural que estudia las propiedades, el comportamiento de la energía, la materia (y cambios en ella que no alteren la naturaleza de la misma), el tiempo y el espacio, así como las interacciones de estos cuatro conceptos entre sí. (es)
  • La physique est la science qui tente de comprendre, de modéliser, voire d'expliquer les phénomènes naturels de l'univers. Elle correspond à l'étude du monde qui nous entoure sous toutes ses formes, des lois de sa variation et de son évolution. La modélisation des systèmes peut laisser de côté les processus chimiques et biologiques ou les inclure. La physique développe des représentations du monde expérimentalement vérifiables dans un domaine de définition donné. Elle produit donc plusieurs lectures du monde, chacune n'étant considérée comme précise que jusqu'à un certain point. (fr)
  • De natuurkunde of fysica is van oorsprong de tak van wetenschap die algemene eigenschappen van materie, straling en energie onderzoekt en beschrijft, zoals kracht, evenwicht en beweging, fasen en faseovergangen, straling, warmte, licht, geluid, magnetisme en elektriciteit, voor zover hierbij geen scheikundige veranderingen optreden. Dit wil zeggen dat de moleculaire samenstelling van stoffen niet verandert. (nl)
  • La fisica è la scienza della natura nel senso più ampio. Il termine "fisica" deriva dal neutro plurale latino physica, a sua volta derivante dal greco τὰ φυσικά [tà physiká], ovvero "le cose naturali" e da φύσις [physis], "natura". L'insieme di principi e leggi fisiche relative ad una certa classe di fenomeni osservati definiscono una teoria fisica deduttiva, coerente e relativamente autoconsistente, costruita tipicamente a partire dall'induzione sperimentale. (it)
  • Fizyka (z stgr. φύσις physis – "natura") – nauka przyrodnicza zajmująca się badaniem właściwości i przemian materii i energii oraz oddziaływań między nimi. Do opisu zjawisk fizycznych fizycy używają wielkości fizycznych, wyrażonych za pomocą pojęć matematycznych, takich jak liczba, wektor, tensor. Tworząc hipotezy i teorie fizyki, budują relacje pomiędzy wielkościami fizycznymi. (pl)
  • Física (do grego antigo: φύσις physis "natureza") é a ciência que estuda a natureza e seus fenômenos em seus aspectos mais gerais. Analisa suas relações e propriedades, além de descrever e explicar a maior parte de suas consequências. Busca a compreensão científica dos comportamentos naturais e gerais do mundo em nosso torno, desde as partículas elementares até o universo como um todo. Com o amparo do método científico e da lógica, e tendo a matemática como linguagem natural, esta ciência descreve a natureza através de modelos científicos. É considerada a ciência fundamental, sinônimo de ciência natural: as ciências naturais, como a química e a biologia, têm raízes na física. Sua presença no cotidiano é muito ampla, sendo praticamente impossível uma completíssima descrição dos fenômenos fí (pt)
  • Фи́зика (от др.-греч. φύσις — природа) — область естествознания: наука о простейших и, вместе с тем, наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания. Общенаучные основы физических методов разрабатываются в теории познания и методологии науки. (ru)
rdfs:label
  • Physics (en)
  • فيزياء (ar)
  • Physik (de)
  • Física (es)
  • Physique (fr)
  • Fisica (it)
  • 物理学 (ja)
  • Natuurkunde (nl)
  • Fizyka (pl)
  • Física (pt)
  • Физика (ru)
  • 物理学 (zh)
rdfs:seeAlso
owl:differentFrom
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:almaMater of
is dbo:award of
is dbo:education of
is dbo:field of
is dbo:genre of
is dbo:knownFor of
is dbo:literaryGenre of
is dbo:mainInterest of
is dbo:nonFictionSubject of
is dbo:occupation of
is dbo:product of
is dbo:profession of
is dbo:teachingStaff of
is dbo:type of
is dbo:wikiPageDisambiguates of
is dbp:area of
is dbp:data of
is dbp:dept of
is dbp:description of
is dbp:disciplines of
is dbp:education of
is dbp:field of
is dbp:fields of
is dbp:formation of
is dbp:mainInterests of
is dbp:major of
is dbp:occupation of
is dbp:practiceEmphases of
is dbp:researchField of
is dbp:scope of
is dbp:topics of
is dbp:workInstitution of
is rdfs:seeAlso of
is owl:differentFrom of
is foaf:primaryTopic of