An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

Property Value
dbo:abstract
  • La química quàntica és una branca de la química teòrica, que es basa a aplicar tant la mecànica quàntica com la teoria quàntica de camps per tal de resoldre problemes en l'àmbit de la química. La descripció del comportament dels electrons als àtoms i molècules per tal de predir la seva reactivitat és una de les seves aplicacions més immediates. La química quàntica és una disciplina que es troba entre la química i la física, i s'hi han fet contribucions significatives per part de científics d'ambdós camps. La química quàntica té una frontera difusa amb els camps de la física atòmica, la física molecular i la química física. La química quàntica descriu el comportament fonamental de la matèria a l'escala molecular. Tot i que és teoria és possible descriure qualsevol sistema químic utilitzant aquesta teoria, a la pràctica només els sistemes senzills poden ser explorats de forma realista utilitzant la mecànica quàntica pura, de manera que s'han de fer aproximacions per la majoria de casos pràctics (per exemple, el mètode Hartree-Fok, la teoria del funcional de la densitat DFT, mètodes pertorbatius com el i MP4 o d'altres com el ). Així, no és necessari, en principi, un coneixement exhaustiu de la mecànica quàntica per a la major part d'aplicacions pràctiques, ja que les implicacions més importants d'aquesta teoria (bàsicament l'aproximació que implica l'orbital atòmic) es poden reformular en termes més senzills. En mecànica quàntica, el hamiltonià d'un sistema, pot ésser expressat com a la suma de dos operadors, un corresponent a l'energia cinètica i l'altre a l'energia potencial. El hamiltonià de l'equació de Schrödinger utilitzada en química quàntica no conté, per exemple, termes deprenents de l'spin de l'electró (com els termes d' o interacció -) ni termes relativistes, ja que en la majoria de casos aquests són menyspreables. Aquests se solen tractar, si s'escau, de forma . La solució de l'equació de Schrödinger per a l'àtom d'hidrogen (el sistema químic més senzill possible) dona lloc als orbitals atòmics i a la seva energia relativa. Aquests orbitals es poden utilitzar per descriure àtoms més complexes (com l'heli o el liti) o molècules en el que s'anomena aproximació orbital. (ca)
  • الكيمياء الكمومية أو كيمياء الكم (بالإنجليزية: Quantum chemistry)‏ هو فرع من الكيمياء النظرية يقوم بتطبيق ميكانيكا الكم ونظرية الحقل الكمومي وتقريب بورن-أوبنهايمر لحل قضايا ومسائل في الكيمياء. أحد تطبيقات الكيمياء الكمومية هي دراسة سلوك الذرات والجزيئات فيما يخص قابليتها للتفاعل. تقع الكيمياء الكمومية على الحدود بين الكيمياء والفيزياء ويشارك بها مختصون من كلا الفرعين. سبب تسميته بهذا الاسم يرجع إلى الأعداد الكمية التي هي عبارة عن أعداد تظهر كنتيجة رياضية منطقية تحدد أحجام وأشكال المجالات الإلكترونية. (ar)
  • Kvantová chemie je obor teoretické chemie, který využívá kvantovou mechaniku a teorii kvantového pole k řešení chemických problémů. Studuje stavy jednotlivých atomů a molekul - jejich stabilní, excitované a přechodné stavy, ke kterým dochází během chemických reakcí. Kvantová chemie leží na rozhraní mezi chemií a fyzikou a dává návod na výpočet vlastností atomů a molekul s pomocí základních fyzikálních konstant. Jednou z nejdůležitějších oblastí kvantové chemie je popis chování elektronů v atomech a molekulách a jejich vliv na reaktivitu. Porozumění elektronové struktuře atomů a molekul umožnila v roce 1926 Schrödingerova rovnice, která se stala základem kvantové chemie. Nadšení nad krásou chemie ukryté v jediném vzorci nebylo vždy sdíleno. V roce 1830 Auguste Comte napsal: Každý pokus o zavedení matematických metod ke studiu chemických problémů musí být považován za hluboce iracionální a odporující duchu chemie. Jestliže by matematika měla hrát někdy významnou úlohu v chemii – úchylka naštěstí málo pravděpodobná – vedlo by to k rychlé degeneraci této vědy. Ale již o sto let později v1929 napsal zakladatel relativistické kvantové mechaniky Paul Dirac: Fyzikální zákony, které jsou nezbytné pro matematickou teorii velké části fyziky a veškerou chemii, jsou zcela známy. Jediná potíž tkví v tom, že přesné použití těchto zákonů vede k příliš složitým rovnicím, než aby se daly řešit. V současnosti je jednou z nejvýznamnějších metod kvantové chemie spektroskopie, která umožňuje získat informace na úrovni atomů a molekul. Nejpoužívanějšími jsou infračervená spektroskopie (IR) a spektroskopie nukleární magnetické rezonance (NMR). (cs)
  • Η Κβαντική Χημεία είναι ο κλάδος εκείνος της (και ειδικότερα της Θεωρητικής Φυσικοχημείας) ο οποίος αποτελεί εφαρμογή της Κβαντικής Μηχανικής (κλάδος της Φυσικής) στα προβλήματα της Χημείας. Η ποιοτική και ποσοτική περιγραφή της ηλεκτρονι(α)κής συμπεριφοράς και δραστικότητας ατόμων και μορίων αποτελεί παράδειγμα εφαρμογής της Κβαντικής Χημείας. Να σημειωθεί ότι αν και θεωρητικός ο κλάδος της Κβαντικής Χημείας συνδέεται άμεσα με τις πειραματικές μετρήσεις και κυρίως με αυτές του πεδίου της Φασματοσκοπίας. Γενικά, οι βασικοί νόμοι της Κβαντομηχανικής που χρησιμοποιούνται για την περιγραφή ενός χημικού συστήματος εκφράζονται μαθηματικά από περίπλοκες εξισώσεις που είναι είτε πολύ δύσκολο, είτε (συχνότερα) αδύνατο να επιλυθούν «με μολύβι και χαρτί», οπότε γίνεται εκτεταμένη χρήση των ηλεκτρονικών υπολογιστών για την αριθμητική επίλυση των ορισθέντων προβλημάτων, έπειτα από κατάλληλες προσεγγίσεις. Έτσι, οδηγούμαστε στο χώρο της υπολογιστικής Κβαντικής Χημείας. Επίσης, καλό είναι να αναφερθεί πως εκτός των κβαντοχημικών υπολογισμών των ιδιοτήτων ενός μορίου υπάρχουν περιπτώσεις στις όποιες επιλέγονται άλλα θεωρητικά μοντέλα που είναι πιο εύχρηστα (π.χ. προσδιορισμός της τρισδιάστατης δομής ενός μακρομορίου), όπως είναι η (κλάδος της Φυσικής). Αυτό φαίνεται πως συμφέρει περισσότερο για τα μεγάλα μόρια, αφού όσο μεγαλύτερο είναι ένα μόριο, τόσο περισσότερα είναι τα ηλεκτρόνιά του και άρα πιο επίπονη η διαδικασία των υπολογισμών. (el)
  • Kvantuma kemio, nomita ankaŭ molekula kvantuma mekaniko, estas subfako de la kemio kiu speciale temas pri la aplikado de la kvantuma mekaniko al kemiaj problemoj, havigas ilojn por determini kiom fortaj la ligoj estas kaj kian formon ili havas, kiel la atomkernoj moviĝas, kaj kiel la lumo povas esti absorbita aŭ elsendita fare de kemia komponaĵoj Ĝi fokuzas al la aplikado de kvantuma mekaniko al fizikaj modeloj kaj eksperimentoj de kemiaj sistemoj. La kompreno de la elektrona strukturo kaj de la molekula dinamiko uzante ekvaciojn de Schrödinger estas centraj temoj en la kvantuma kemio. Ofte oni konsideras la naskon de la kvantuma kemio kiel startita per la malkovro de la Ekvacio de Schrödinger kaj de ties aplikado al la hidrogena atomo en 1926. Tamen, la artikolo de 1927 de (1904–1981) kaj , estis ofte agnoskita kiel la unua grava mejloŝtono en la historio de la kvantuma kemio. Tiu estis la unua aplikado de la kvantuma mekaniko al la duatoma hidrogena molekulo, kaj tiel al la fenomeno de la kemiaj ligoj. En la postaj jaroj multa progreso estis farita fare de , Max Born, J. Robert Oppenheimer, Linus Pauling, , , , inter aliaj. La historio de la kvantuma kemio ankaŭ trairis en 1838 la malkovron de la fare de Michael Faraday, en 1859 la starigon de la problemo de la radiado de nigraj korpoj fare de Gustav Kirchhoff, en 1877 la sugeston fare de Ludwig Boltzmann, ke la energiaj statoj de fizika sistemo povus esti diskreta, kaj en 1900 la kvantuman hipotezon fare de Max Planck, ke ajna energiradia atomsistemo povas teorie esti dividita en nombraj diskretaj energielementojn ε tiel ke ĉiu el tiuj energielementoj estas proporcia al la frekvenco ν laŭ kiuj ili unuope radias energion kaj al nombra valoro nomita Konstanto de Planck. Poste, en 1905, por klarigi la fotoelektran efikon (1839), t.e., la brila lumo de kelkaj materialoj kiu povas funkcii por elsendi elektronojn el la materialo, Albert Einstein postulis, baze sur la kvantuma hipotezo de Planck, ke la lumo mem konsistas el unuopaj kvantumaj partikloj, kiuj poste estis nomitaj fotonoj (1926). En postaj jaroj, tiu teoria bazo malrapide ekestis aplikita al la kemia strukturo, reaktiveco, kaj ligoj. Probable la plej granda kontribuo al la fako estis farita de Linus Pauling. (eo)
  • Die Quantenchemie ist die Anwendung der Quantenmechanik auf chemische Problemstellungen, z. B. die Beschreibung der elektronischen Struktur von Atomen und Molekülen und die Auswirkungen auf ihre Reaktionsfähigkeit und somit ein Teilgebiet der Theoretischen Chemie. (Quantenmechanische Untersuchungen an Atomen werden als Grenzlinie zwischen Chemie und Physik angesehen und nicht zwingend der Quantenchemie zugeordnet.) Die Grundlage für die meisten quantenchemischen Methoden ist die Schrödingergleichung. Da diese jedoch selbst innerhalb der Born-Oppenheimer-Näherung nur für sehr einfache Systeme lösbar ist, müssen weitere Näherungen eingeführt werden. Als eines der ersten wurde das Wasserstoff-Molekül quantenchemisch untersucht und berechnet, und zwar 1927 von den deutschen Wissenschaftlern Walter Heitler und Fritz London. Die von ihnen entwickelte Methode wurde von den amerikanischen Chemikern John C. Slater und Linus Pauling zur Valence-Bond (VB)- oder Heitler-London-Slater-Pauling (HLSP)-Methode erweitert. In ihr wird der Fokus auf die Betrachtung der paarweisen Wechselwirkung zwischen Atomen gelegt, sie passt somit gut zur klassischen Betrachtung der chemischen Bindung. Eine alternative Annäherung an die Natur der chemischen Bindung wurde von Friedrich Hund und Robert S. Mulliken entwickelt, die Elektronen als delokalisiert in Form mathematischer Funktionen beschreibt. Die als Hund-Mulliken- oder verbreiteter als Molecular Orbital (MO)-Methode bezeichnete Beschreibung ist für den klassischen Chemiker weniger intuitiv und trotzdem inzwischen bei weitem gebräuchlicher. Mit beiden Ansätzen sind über mathematische Näherungsverfahren Vorhersagen über stoffliche Eigenschaften möglich. Die Anwendbarkeit der Quantenchemie in Form von Computerberechnungen findet sich unter Computerchemie. Einige weiterführende Thematiken sind: * die Hartree-Fock-Methode (SCF-Verfahren (SCF: self-consistent field)) * post-HF Methoden (z. B. Configuration Interaction, Coupled-Cluster) * die Dichtefunktionaltheorie * Semiempirische Methoden * Car-Parrinello-Methode Folgende Personen waren bzw. sind für die Entwicklung der Quantenchemie von Bedeutung: * Erich Hückel * Hans Hellmann * Rudolph Pariser * Robert G. Parr * John Pople * Henry Eyring (Eyring-Theorie) * Michele Parrinello * Reinhart Ahlrichs * Werner Kutzelnigg (de)
  • Kimika kuantikoa, mekanika kuantikoa kimikan aplikatzea da. Kimika kuantikoaren aplikazioetako bat, atomo eta molekulen portaeraren azterketa da, bere propietate optiko, elektriko, magnetiko eta mekanikoei dagokienez, baita bere erreaktibotasuna ere, bere erredox propietateak, etab..., baina materialak ere aztertzen dira, solido hedatuak zein azalerak. Atomoei buruzko azterketa mekanokuantikoak, kimika eta fisikaren arteko mugatzat jotzen direnez, eta, orohar, kimika kuantikoaren barnean hartzen ez direnez, sarri, kimika kuantikoko lehen kalkulutzat, eta zientzialari alemaniarrek egina jotzen da (Heitler eta London fisikaritzat hartzen diren arren). Heitler eta Londonen metodoa, eta Linus Pauling amerikarrek hobetu zuten, bihurtzeko (edo Heitler-London-Slater-Pauling (HLSP)). Metodo honetan, arreta, bereziki, atomo pareen arteko erreakzioetan jartzen da, eta, beraz, atomoen arteko loturen eskema klasikoekin asko lotzen da. Friedrich Hund eta Robert S. Mullikenek, metodo alternatibo bat garatu zuten, non, elektroiak, molekula osotik deslokalizatutako funtzio matematikoen bidez deskribatzen ziren. Hund-Mullikenen metodoa (edo ), ez da hain intuiziozkoa kimikarientzat, baina, propietateak iragartzerako orduan, balentzia lotura metodoa baino indartsuagoa dela frogatu denez, birtualki, azken urteetan erabiltzen den bakarra da. (eu)
  • La chimie quantique est une branche de la chimie théorique qui applique la mécanique quantique aux systèmes moléculaires pour étudier les processus et les propriétés chimiques. Le comportement électronique et nucléaire des molécules étant responsable des propriétés chimiques, il ne peut être décrit adéquatement qu'à partir de l'équation du mouvement quantique (équation de Schrödinger) et des autres postulats fondamentaux de la mécanique quantique. Cette nécessité a motivé le développement de concepts (notamment orbitale moléculaire…) et de méthodes de calculs numériques qui ont permis à la chimie moderne de faire des progrès considérables tant en ce qui concerne la compréhension des phénomènes que des applications. (fr)
  • La química cuántica es una rama de la química teórica donde se aplica la mecánica cuántica y la teoría cuántica de campos. Describe matemáticamente el comportamiento fundamental de la materia a escala molecular. Una aplicación de la química cuántica es el estudio del comportamiento de átomos y moléculas, en cuanto a sus propiedades ópticas, eléctricas, magnéticas y mecánicas, y también su reactividad química, sus propiedades redox, etcétera, pero también se estudian materiales tanto sólidos extendidos como superficies.​​ El estudio de la química cuántica tiene una fuerte y activa relación con algunos campos científicos como la física molecular, la física atómica y la fisicoquímica, y las contribuciones al respecto provienen tanto de físicos como de químicos. Frecuentemente se considera como el primer cálculo de química cuántica el llevado a cabo por los científicos alemanes Walter Heitler y Fritz London (aunque a Heitler y a London se les suele considerar físicos). El método de Heitler y London fue perfeccionado por los químicos estadounidenses John C. Slater y Linus Pauling, para convertirse en la teoría del enlace de valencia (también llamada teoría Heitler-London-Slater-Pauling).​ En este método, se presta atención particularmente a las interacciones entre pares de átomos, y por tanto se relaciona mucho con los esquemas clásicos de enlaces entre átomos.​ Friedrich Hund y Robert S. Mulliken desarrollaron un método alternativo, la teoría de los orbitales moleculares, en la que los electrones se describían mediante funciones matemáticas deslocalizadas por toda la molécula. El método de Hund-Mulliken (o de orbitales moleculares) es menos intuitivo para los químicos; sin embargo, al haberse comprobado que es más potente a la hora de predecir propiedades que el método de enlace de valencia, es virtualmente el único usado en los últimos años.[cita requerida] (es)
  • Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics. Chemists rely heavily on spectroscopy through which information regarding the quantization of energy on a molecular scale can be obtained. Common methods are infra-red (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning probe microscopy. Quantum chemistry may be applied to the prediction and verification of spectroscopic data as well as other experimental data. Many quantum chemistry studies are focused on the electronic ground state and excited states of individual atoms and molecules as well as the study of reaction pathways and transition states that occur during chemical reactions. Spectroscopic properties may also be predicted. Typically, such studies assume the electronic wave function is adiabatically parameterized by the nuclear positions (i.e., the Born–Oppenheimer approximation). A wide variety of approaches are used, including semi-empirical methods, density functional theory, Hartree-Fock calculations, quantum Monte Carlo methods, and coupled cluster methods. Understanding electronic structure and molecular dynamics through the development of computational solutions to the Schrödinger equation is a central goal of quantum chemistry. Progress in the field depends on overcoming several challenges, including the need to increase the accuracy of the results for small molecular systems, and to also increase the size of large molecules that can be realistically subjected to computation, which is limited by scaling considerations — the computation time increases as a power of the number of atoms. (en)
  • Kimia kuantum adalah sebuah cabang kimia teori, yang menerapkan mekanika kuantum (dan belakangan ini teori medan kuantum) untuk menangani masalah dalam kimia. Penjelasan perilaku elektron pada atom dan molekul dalam kaitannya dengan kereaktifan adalah salah satu terapan kimia kuantum. Kimia kuantum terletak di perbatasan antara kimia dan fisika, dan sumbangan yang berarti telah dicapai oleh ilmuwan dari kedua bidang tersebut. (in)
  • 量子化学(りょうしかがく、(英: quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。 (ja)
  • 양자화학이란 화학의 분야 중 하나로, 양자역학의 여러 원리를 화학의 여러 문제에 적용하여 원자와 전자의 움직임부터 분자구조와 물성 또는 화학 반응을 이론적으로 설명하는 학문 분야이다. (ko)
  • La chimica quantistica è la branca della chimica teorica che interpreta una serie di fenomeni utilizzando la meccanica quantistica. Si trova al confine tra la chimica e la fisica e importanti contributi sono venuti da scienziati di entrambi i campi.Una delle applicazioni è lo studio della reattività di atomi e molecole sulla base del comportamento degli elettroni. (it)
  • Chemia kwantowa – dziedzina z pogranicza fizyki i chemii, która stosujemechanikę kwantową i kwantową teorię pola do opisu atomowych i molekularnych układów będących przedmiotem zainteresowania chemii. Podstawowym równaniem nierelatywistycznej chemii kwantowej jest równanie Schrödingera. Głównym zadaniem chemii kwantowej jest rozwijanie metod rozwiązywania równania Schrödingera opisującego atomy i cząsteczki, najdokładniej jak jest to możliwe, oraz zastosowanie tych metod w praktycznych obliczeniach. W tym celu chemicy kwantowi rozwinęli szereg matematycznych i numerycznych metod. Efekty relatywistyczne w chemii kwantowej uwzględnia się zastępując równanie Schrödingera równaniem Diraca, albo wprowadzając poprawki, wynikające z relatywistycznej mechaniki kwantowej i kwantowej teorii pola, przy użyciu teorii perturbacji (rachunku zaburzeń), lub metody wariacyjnej. Punktem startowym przeważającej części obliczeń w chemii kwantowej jest przybliżenie Borna-Oppenheimera. Przybliżenie to pozwala odseparować dynamikę ruchu elektronów i jąder oraz podzielić obliczenia na dwa kroki. W pierwszy kroku rozwiązuje się równanie Schrödingera (lub Diraca) z elektronowym hamiltonianem, otrzymując zależność energii elektronowej w funkcji współrzędnych atomów. W drugim kroku rozwiązuje się równanie Schrödingera dla ruch jąder z potencjałem uzyskanym w pierwszym kroku. W praktyce główny nacisk w chemii kwantowej kładzie się na rozwiązanie problemu elektronowego, ponieważ niedokładność tych obliczeń wpływa głównie na rozbieżności pomiędzy danymi doświadczalnymi a eksperymentalnymi. Dziedzinę, która wykorzystuje metody chemii kwantowej (jak również klasyczne lub półklasyczne teorie), a nie zajmuje się rozwijaniem metod matematycznych i numerycznych, nazywa się chemią obliczeniową. (pl)
  • De kwantumchemie is het deelgebied van de natuurkunde en de theoretische scheikunde dat tracht chemische verschijnselen zoals chemische binding en katalyse te beschrijven met behulp van de kwantummechanica. Daar het ondoenlijk is om dit exact te doen (zelfs de schrödingervergelijking is een benadering die relativistische effecten verwaarloost), hebben benaderingsmethoden altijd een grote rol gespeeld binnen de kwantumchemie. Aanvankelijk waren dat analytische benaderingen en "intuïtieve" modellen, zoals de hybridisatietheorie van Pauling, maar met het beschikbaar komen van krachtige computers konden de benaderingen steeds complexer en nauwkeuriger worden. Het vakgebied is dan ook sterk verweven met dat van de computationele chemie. (nl)
  • Química quântica é a teoria avançada igualada a química teórica, no qual aplicam-se ferramentas da mecânica quântica e teoria quântica de campos para abordar problemas em química. Visa descrever, explicar e prever o comportamento de sistemas físico-químicos microscópicos, com base no comportamento eletrônico de átomos, moléculas íons e redes cristalinas, como as relacionadas com sua reatividade. Este campo científico situa-se na fronteira entre a química e a física, e significativas contribuições tem sido feitas por cientistas de ambos os campos. Ela tem uma forte e ativa sobreposição com os campos da física atômica e física molecular, assim como com a físico-química. (pt)
  • Kvantkemi är en gren inom teoretisk kemi som använder teorier från kvantmekanik och kvantfältteori för att lösa kemiska problem. Ett användningsområde är till exempel att utnyttja den kvantmekaniska beskrivningen av elektronernas egenskaper hos atomer och molekyler för att få veta något om deras (atomernas och molekylernas) reaktivitet. Kvantkemin angränsar både till kemin och fysiken, och viktiga bidrag har gjorts av vetenskapsmän inom båda dessa områden. Kvantkemin överlappar – och har en stark koppling till – atomfysik och molekylfysik samt fysikalisk kemi. (sv)
  • Ква́нтова хі́мія — міждисциплінарна галузь науки, яка використовує засади квантової механіки для чисельних розрахунків структур та властивостей хімічних молекул. (uk)
  • 量子化学(英語:Quantum chemistry),或称分子量子力學,是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理学与量子化学的标准之一。 目前认为最早的量子化学计算是1927年布劳(Ø.Burrau)对H+2离子以及同年瓦尔特·海特勒和弗里茨·伦敦对H2分子的计算,开创量子化学这一個交叉学科。经过近八十年发展之后,量子化学已经成为化学家们广泛应用的一种理论方法。 (zh)
  • Ква́нтовая хи́мия — направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия — дисциплина, использующая математические методы квантовой химии, адаптированные для создания специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах, симуляции взаимодействия молекул. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25211 (xsd:integer)
dbo:wikiPageLength
  • 15472 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1107981052 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • الكيمياء الكمومية أو كيمياء الكم (بالإنجليزية: Quantum chemistry)‏ هو فرع من الكيمياء النظرية يقوم بتطبيق ميكانيكا الكم ونظرية الحقل الكمومي وتقريب بورن-أوبنهايمر لحل قضايا ومسائل في الكيمياء. أحد تطبيقات الكيمياء الكمومية هي دراسة سلوك الذرات والجزيئات فيما يخص قابليتها للتفاعل. تقع الكيمياء الكمومية على الحدود بين الكيمياء والفيزياء ويشارك بها مختصون من كلا الفرعين. سبب تسميته بهذا الاسم يرجع إلى الأعداد الكمية التي هي عبارة عن أعداد تظهر كنتيجة رياضية منطقية تحدد أحجام وأشكال المجالات الإلكترونية. (ar)
  • La chimie quantique est une branche de la chimie théorique qui applique la mécanique quantique aux systèmes moléculaires pour étudier les processus et les propriétés chimiques. Le comportement électronique et nucléaire des molécules étant responsable des propriétés chimiques, il ne peut être décrit adéquatement qu'à partir de l'équation du mouvement quantique (équation de Schrödinger) et des autres postulats fondamentaux de la mécanique quantique. Cette nécessité a motivé le développement de concepts (notamment orbitale moléculaire…) et de méthodes de calculs numériques qui ont permis à la chimie moderne de faire des progrès considérables tant en ce qui concerne la compréhension des phénomènes que des applications. (fr)
  • Kimia kuantum adalah sebuah cabang kimia teori, yang menerapkan mekanika kuantum (dan belakangan ini teori medan kuantum) untuk menangani masalah dalam kimia. Penjelasan perilaku elektron pada atom dan molekul dalam kaitannya dengan kereaktifan adalah salah satu terapan kimia kuantum. Kimia kuantum terletak di perbatasan antara kimia dan fisika, dan sumbangan yang berarti telah dicapai oleh ilmuwan dari kedua bidang tersebut. (in)
  • 量子化学(りょうしかがく、(英: quantum chemistry)とは理論化学(物理化学)の一分野で、量子力学の諸原理を化学の諸問題に適用し、原子と電子の振る舞いから分子構造や物性あるいは反応性を理論的に説明づける学問分野である。 (ja)
  • 양자화학이란 화학의 분야 중 하나로, 양자역학의 여러 원리를 화학의 여러 문제에 적용하여 원자와 전자의 움직임부터 분자구조와 물성 또는 화학 반응을 이론적으로 설명하는 학문 분야이다. (ko)
  • La chimica quantistica è la branca della chimica teorica che interpreta una serie di fenomeni utilizzando la meccanica quantistica. Si trova al confine tra la chimica e la fisica e importanti contributi sono venuti da scienziati di entrambi i campi.Una delle applicazioni è lo studio della reattività di atomi e molecole sulla base del comportamento degli elettroni. (it)
  • Química quântica é a teoria avançada igualada a química teórica, no qual aplicam-se ferramentas da mecânica quântica e teoria quântica de campos para abordar problemas em química. Visa descrever, explicar e prever o comportamento de sistemas físico-químicos microscópicos, com base no comportamento eletrônico de átomos, moléculas íons e redes cristalinas, como as relacionadas com sua reatividade. Este campo científico situa-se na fronteira entre a química e a física, e significativas contribuições tem sido feitas por cientistas de ambos os campos. Ela tem uma forte e ativa sobreposição com os campos da física atômica e física molecular, assim como com a físico-química. (pt)
  • Kvantkemi är en gren inom teoretisk kemi som använder teorier från kvantmekanik och kvantfältteori för att lösa kemiska problem. Ett användningsområde är till exempel att utnyttja den kvantmekaniska beskrivningen av elektronernas egenskaper hos atomer och molekyler för att få veta något om deras (atomernas och molekylernas) reaktivitet. Kvantkemin angränsar både till kemin och fysiken, och viktiga bidrag har gjorts av vetenskapsmän inom båda dessa områden. Kvantkemin överlappar – och har en stark koppling till – atomfysik och molekylfysik samt fysikalisk kemi. (sv)
  • Ква́нтова хі́мія — міждисциплінарна галузь науки, яка використовує засади квантової механіки для чисельних розрахунків структур та властивостей хімічних молекул. (uk)
  • 量子化学(英語:Quantum chemistry),或称分子量子力學,是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理学与量子化学的标准之一。 目前认为最早的量子化学计算是1927年布劳(Ø.Burrau)对H+2离子以及同年瓦尔特·海特勒和弗里茨·伦敦对H2分子的计算,开创量子化学这一個交叉学科。经过近八十年发展之后,量子化学已经成为化学家们广泛应用的一种理论方法。 (zh)
  • La química quàntica és una branca de la química teòrica, que es basa a aplicar tant la mecànica quàntica com la teoria quàntica de camps per tal de resoldre problemes en l'àmbit de la química. La descripció del comportament dels electrons als àtoms i molècules per tal de predir la seva reactivitat és una de les seves aplicacions més immediates. La química quàntica és una disciplina que es troba entre la química i la física, i s'hi han fet contribucions significatives per part de científics d'ambdós camps. La química quàntica té una frontera difusa amb els camps de la física atòmica, la física molecular i la química física. (ca)
  • Kvantová chemie je obor teoretické chemie, který využívá kvantovou mechaniku a teorii kvantového pole k řešení chemických problémů. Studuje stavy jednotlivých atomů a molekul - jejich stabilní, excitované a přechodné stavy, ke kterým dochází během chemických reakcí. Kvantová chemie leží na rozhraní mezi chemií a fyzikou a dává návod na výpočet vlastností atomů a molekul s pomocí základních fyzikálních konstant. Nadšení nad krásou chemie ukryté v jediném vzorci nebylo vždy sdíleno. V roce 1830 Auguste Comte napsal: (cs)
  • Η Κβαντική Χημεία είναι ο κλάδος εκείνος της (και ειδικότερα της Θεωρητικής Φυσικοχημείας) ο οποίος αποτελεί εφαρμογή της Κβαντικής Μηχανικής (κλάδος της Φυσικής) στα προβλήματα της Χημείας. Η ποιοτική και ποσοτική περιγραφή της ηλεκτρονι(α)κής συμπεριφοράς και δραστικότητας ατόμων και μορίων αποτελεί παράδειγμα εφαρμογής της Κβαντικής Χημείας. Να σημειωθεί ότι αν και θεωρητικός ο κλάδος της Κβαντικής Χημείας συνδέεται άμεσα με τις πειραματικές μετρήσεις και κυρίως με αυτές του πεδίου της Φασματοσκοπίας. (el)
  • Die Quantenchemie ist die Anwendung der Quantenmechanik auf chemische Problemstellungen, z. B. die Beschreibung der elektronischen Struktur von Atomen und Molekülen und die Auswirkungen auf ihre Reaktionsfähigkeit und somit ein Teilgebiet der Theoretischen Chemie. (Quantenmechanische Untersuchungen an Atomen werden als Grenzlinie zwischen Chemie und Physik angesehen und nicht zwingend der Quantenchemie zugeordnet.) Die Grundlage für die meisten quantenchemischen Methoden ist die Schrödingergleichung. Da diese jedoch selbst innerhalb der Born-Oppenheimer-Näherung nur für sehr einfache Systeme lösbar ist, müssen weitere Näherungen eingeführt werden. (de)
  • Kvantuma kemio, nomita ankaŭ molekula kvantuma mekaniko, estas subfako de la kemio kiu speciale temas pri la aplikado de la kvantuma mekaniko al kemiaj problemoj, havigas ilojn por determini kiom fortaj la ligoj estas kaj kian formon ili havas, kiel la atomkernoj moviĝas, kaj kiel la lumo povas esti absorbita aŭ elsendita fare de kemia komponaĵoj Ĝi fokuzas al la aplikado de kvantuma mekaniko al fizikaj modeloj kaj eksperimentoj de kemiaj sistemoj. La kompreno de la elektrona strukturo kaj de la molekula dinamiko uzante ekvaciojn de Schrödinger estas centraj temoj en la kvantuma kemio. (eo)
  • La química cuántica es una rama de la química teórica donde se aplica la mecánica cuántica y la teoría cuántica de campos. Describe matemáticamente el comportamiento fundamental de la materia a escala molecular. Una aplicación de la química cuántica es el estudio del comportamiento de átomos y moléculas, en cuanto a sus propiedades ópticas, eléctricas, magnéticas y mecánicas, y también su reactividad química, sus propiedades redox, etcétera, pero también se estudian materiales tanto sólidos extendidos como superficies.​​ (es)
  • Kimika kuantikoa, mekanika kuantikoa kimikan aplikatzea da. Kimika kuantikoaren aplikazioetako bat, atomo eta molekulen portaeraren azterketa da, bere propietate optiko, elektriko, magnetiko eta mekanikoei dagokienez, baita bere erreaktibotasuna ere, bere erredox propietateak, etab..., baina materialak ere aztertzen dira, solido hedatuak zein azalerak. (eu)
  • Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics. (en)
  • De kwantumchemie is het deelgebied van de natuurkunde en de theoretische scheikunde dat tracht chemische verschijnselen zoals chemische binding en katalyse te beschrijven met behulp van de kwantummechanica. (nl)
  • Chemia kwantowa – dziedzina z pogranicza fizyki i chemii, która stosujemechanikę kwantową i kwantową teorię pola do opisu atomowych i molekularnych układów będących przedmiotem zainteresowania chemii. Podstawowym równaniem nierelatywistycznej chemii kwantowej jest równanie Schrödingera. Głównym zadaniem chemii kwantowej jest rozwijanie metod rozwiązywania równania Schrödingera opisującego atomy i cząsteczki, najdokładniej jak jest to możliwe, oraz zastosowanie tych metod w praktycznych obliczeniach. W tym celu chemicy kwantowi rozwinęli szereg matematycznych i numerycznych metod. (pl)
  • Ква́нтовая хи́мия — направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С кван (ru)
rdfs:label
  • Quantum chemistry (en)
  • كيمياء الكم (ar)
  • Química quàntica (ca)
  • Kvantová chemie (cs)
  • Quantenchemie (de)
  • Κβαντική χημεία (el)
  • Kvantuma kemio (eo)
  • Química cuántica (es)
  • Kimika kuantiko (eu)
  • Kimia kuantum (in)
  • Chimica quantistica (it)
  • Chimie quantique (fr)
  • 量子化学 (ja)
  • 양자화학 (ko)
  • Kwantumchemie (nl)
  • Chemia kwantowa (pl)
  • Química quântica (pt)
  • Квантовая химия (ru)
  • Kvantkemi (sv)
  • 量子化学 (zh)
  • Квантова хімія (uk)
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:knownFor of
is dbo:occupation of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:discipline of
is dbp:field of
is dbp:fields of
is dbp:knownFor of
is dbp:occupation of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License