Temperature is a physical property of matter that quantitatively expresses hot and cold. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, a flow of energy, when a body is in contact with another that is colder. The lowest theoretical temperature is absolute zero, at which no more thermal energy can be extracted from a body. Experimentally, it can only be approached very closely, but not reached, which is recognized in the third law of thermodynamics.

Property Value
dbo:abstract
  • درجة حرارة هي مؤشر على كمية الطاقة الحرارية التي يختزنها الجسم كما أنها مؤشر على مدى حركية ذراته حيث يمكن رياضياً إيجاد معادلة تصل بين الطاقة الحركية لجزيئات أو ذرات جسم ما ودرجة حرارته. هناك العديد من الوحدات لقياس درجة الحرارة مثل الكلفن و السيلزيوس و درجة الحرارة هي مقياس مدى سخونة جسم ما أو برودته، وهي التي تحدد اتجاه انتقال الحرارة تلقائيا، إلا أنه ممكن استنفاذ شغل لنقلها في الاتجاه المعاكس. (ar)
  • La temperatura és una magnitud física de la matèria que expressa quantitativament les nocions comunes de calor i fred. Els objectes de baixa temperatura són freds, mentre que els nivells de temperatures més altes es coneixen amb els noms de tebi o calent. La temperatura es mesura quantitativament amb termòmetres, que poden ser calibrats respecte a diferents escales de temperatura. A gairebé tot el món s'utilitza l'escala Celsius (°C) per a la mesura de la majoria de les temperatures. Aquesta escala té el mateix escalat incremental que l'escala Kelvin, usada pels científics, però fixa el seu punt nul en els 273,15 kèlvins, 0 °C = 273,15 K, el punt de congelació de l'aigua. Tanmateix, hi ha alguns pocs països, sobretot els Estats Units, on encara s'utilitza l'escala Fahrenheit a la vida diària, una escala històrica a la qual l'aigua es congela a 32 °F i bull a 212 °F. A efectes pràctics de la mesura de la temperatura dins dels camps de la ciència, el Sistema Internacional d'Unitats (SI) defineix una escala i una unitat per a la temperatura termodinàmica basant-se en un segon punt de referència fàcilment reproduïble com és la temperatura del punt triple de l'aigua. Per raons històriques, el punt triple de l'aigua ha estat fixat en 273,16 unitats de l'interval de mesura, que ha estat anomenat kelvin (en minúscula) en honor del físic escocès William Thomson (Lord Kelvin) que va definir per primera vegada l'escala. El símbol del kelvin és K (en majúscula). La temperatura és una de les principals propietats estudiades en el camp de la termodinàmica, en aquest camp són particularment importants les diferències de temperatura entre diferents regions de la matèria, ja que aquestes diferències són la força motriu de la calor, que és la transferència de l'energia tèrmica. Espontàniament, la calor flueix només de les regions de major temperatura a les regions de menor temperatura. De manera que si no es transfereix calor entre dos objectes és perquè ambdós objectes tenen la mateixa temperatura. Segons l'enfocament de la termodinàmica clàssica, la temperatura d'un objecte varia proporcionalment a la velocitat de les partícules que conté, no depèn del nombre de partícules (de la massa) sinó de la seva velocitat mitjana: a major temperatura major velocitat mitjana. Per tant, la temperatura està lligada directament a l'energia cinètica mitjana de les partícules que es mouen en relació al centre de massa de l'objecte. La temperatura és una variable intensiva, ja que és independent de la quantitat de les partícules contingudes a l'interior d'un objecte, ja siguin àtoms, molècules o electrons, és una propietat que és inherent al sistema i no depèn ni de la quantitat de substància ni del tipus de material. Per tal que hom pugui determinar la temperatura d'un sistema, aquest ha d'estar en equilibri termodinàmic. Es pot considerar que la temperatura varia amb la posició només si per a cada punt hi ha una petita zona al seu voltant que es pot tractar com un sistema termodinàmic en equilibri. A la termodinàmica estadística, en comptes de partícules es parla de graus de llibertat. En un enfocament més fonamental, la definició empírica de la temperatura es deriva de les condicions de l'equilibri tèrmic, que són expressades al principi zero de la termodinàmica. Quan dos sistemes són en equilibri tèrmic tenen la mateixa temperatura. L'extensió d'aquest principi com una relació d'equivalència entre diversos sistemes justifica fonamentalment la utilització del termòmetre i estableix els principis de la seva construcció per a mesurar la temperatura. Tot i que el principi zero de la termodinàmica permetria la definició empírica de moltes escales de temperatura, el segon principi de la termodinàmica selecciona una única definició com a la preferida, la temperatura absoluta, coneguda com a temperatura termodinàmica. Aquesta funció correspon a la variació de l'energia interna pel que fa als canvis a l'entropia d'un sistema. El seu origen natural, intrínsec o punt nul és el zero absolut, punt on l'entropia de qualsevol sistema és mínima. Encara que aquesta és la temperatura mínima absoluta descrita pel model, el tercer principi de la termodinàmica postula que el zero absolut no pot ser assolit per cap sistema físic. (ca)
  • Teplota je charakteristika tepelného stavu hmoty. V obecném významu je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. V přírodních a technických vědách a jejich aplikacích je to skalární intenzivní veličina, která je vzhledem ke svému pravděpodobnostnímu charakteru vhodná k popisu stavu ustálených makroskopických systémů.Teplota souvisí s kinetickou energií částic látky. Teplota je základní fyzikální veličinou soustavy SI s plným názvem termodynamická teplota, jednotkou kelvin (K) a vedlejší jednotkou stupeň Celsia (°C).Nejnižší možnou teplotou je teplota absolutní nuly (0 K; −273,15 °C), ke které se lze libovolně přiblížit, avšak nelze jí dosáhnout. K měření teploty se používají teploměry. Teplota je ústředním pojmem termiky a klíčovou veličinou pro popis tepelných jevů. Projevuje se i v mnoha dalších fyzikálních jevech a závisí na ní mnohé makroskopické mechanické, elektromagnetické i chemické vlastnosti látek. Její význam zasahuje do širokého spektra oborů lidské činnosti, je důležitým pojmem např. v průmyslových aplikacích, lékařství a ekologii. (cs)
  • Θερμοκρασία είναι το φυσικό μέγεθος που μετρά τη μέση κινητική ενέργεια από μεταφορά ,ταλάντωση ή περιστροφή των δομικών λίθων (ατόμων,μορίων,ιόντων) της ύλης . Η μεταφορά της ενέργειας αυτής (θερμότητας), όταν πιάνουμε κάτι με το χέρι για παράδειγμα, μας δίνει την αίσθηση του ζεστού και του κρύου με την κατάσταση αύξησης ενέργειας να αντιστοιχεί στο «ζεστό» ή «θερμό», όταν συνολικά παίρνουμε ενέργεια, και της κατάστασης μείωσης ενέργειας, κατά την οποία αντιλαμβανόμαστε να χάνουμε συνολικά ενέργεια, να αντιστοιχεί στο «κρύο». (el)
  • Temperaturo estas fizika eco de materio, la bazo de la komunaj nocioj "varma" kaj "malvarma". Aĵo kun alta temperaturo sentiĝas varma, aĵo kun malalta temperaturo sentiĝas malvarma. Temperaturo difiniĝas plurmaniere kiel la nivelo de terma agitado ( de gasoj), aŭ laŭ la ekvilibro de termaj transferoj inter pluraj sistemoj, aŭ ankoraŭ per la entropio en termodinamiko. (eo)
  • Die Temperatur ist eine physikalische Größe zur Beschreibung der atomaren Bewegungsenergie und spielt in der Thermodynamik eine wichtige Rolle. Ihre SI-Einheit ist das Kelvin (K). In Deutschland, Österreich und der Schweiz werden Temperaturen meist in der Einheit Grad Celsius (°C) angegeben. Die Temperatur beschreibt die ungeordnete Teilchenbewegung eines Stoffes. In idealen Gasen ist sie ein direktes Maß für die mittlere kinetische Energie der Teilchen (siehe kinetische Gastheorie). In ihrer allgemeinsten physikalischen Definition ist die Temperatur in Kelvin die mittlere kinetische Energie eines Systems pro Freiheitsgrad in Einheiten der halben Boltzmann-Konstante. (de)
  • La temperatura es una magnitud referida a la noción de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como energía cinética, que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que sea mayor la energía cinética de un sistema, se observa que este se encuentra más «caliente»; es decir, que su temperatura es mayor. En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también). El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente. Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Asimismo, es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas. La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor «cero kelvin» (0 K) al «cero absoluto», y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius, llamada «centígrada», y, en mucha menor medida, y prácticamente solo en los Estados Unidos, la escala Fahrenheit. (es)
  • Tenperatura magnitude fisiko bat da, termometroen bidez neurtzen dena; zehatzago deiturik, tenperatura termodinamikoa deritzo. Eguneroko bizimodu arruntean, tenperatura giza gorputzaren eta ingurumenaren arteko trasferentzia termikoa adierazten duten hotz- eta bero-sentsazioekin erlazionaturik dago. Tenperatura termodinamikoa Nazioarteko SI sistemako oinarrizko zazpi magnitude fisikoetako bat da, denbora, luzera, masa, korronte elektrikoa, materia-kantitatea eta argi-intentsitatearekin batera; gainerako magnitude fisikoak zazpi oinarrizko magnitue horietatik eratortzen dira. SI unitate-sisteman, tenperatura termodinamikoaren unitateari kelvin deritzo eta sinboloaz adierazten da. Fisikan, zenbait modu desberdinetan definitzen da: * Gasen teoria zinetikoan, materiaren oinarrizko osagaien agitazio termikoaren mailaren funtzio modura. Hain zuzen, gas idealen kasuan, energia zinaetikoaren balioa tenperaturaren proportzionala da. * Sistema fisikoen arteko bero-transferentzien orekaren bidez. * Entropia kontzeptutik abiaturik (termodinamikan eta fisika estatistikoan). * Proteina baten bibrazio termikoaren simulazioa. Bibrazioaren anplitudea handiagotu egiten da tenperatura igo ahala. * Gas baten tenperaturak bere barneko atomo eta molekulen higiduraren eta bibrazioen energiaren neurria adierazten du. Termodinamikaren arloan, tenperatura garrantzi handiko propietate bat da; besteak beste, barne-energia eta entalpia kontzeptuetan agertzen da. Tenperatura da, ez baitago sistemaren materia kantitatearen menpe; hau da, dagoen sistema baten tenperaturaren balioa berbera da sistema osoa kontuan hartuta edo parte bat soilik kontsideraturik. Fisikaren arloaz gain, tenperatura oso garrantzitsua da beste hainbat arlotan, hala nola meteorologian, klimatologian, medikuntzan eta kimikan, sukaldaritzan ere funtsezkoa dela ahantzi gabe. Tenperatura termometroen bidez neurtzen da eta eskala ezberdinetan adierazi ohi da. Europan ohikoak diren termometro arruntetan, Celsius eskala erabiltzen da; bertako neurriak Celsius gradutan (gradu zentigradu ere esaten zaie) adierazten dira ( sinboloa). Eskala horretan izotza -an urtzen da, eta ura -an hasten da irakiten presio atmosferiko estandarrean (1 atm). Lurralde anglosaxoietan Fahrenheit eskala erabili ohi da, Fahrenheit graduak ( sinboloa) dituena bertan markaturik. Eskala horretan ura -an izozten da eta -an irakiten. Unitateen Nazioarteko SI sistemako unitatea kelvin izenekoa da eta sinboloaz adierazten da. Zero absolutuaren tenperatua da eta uraren puntu hirukoitzarena . (eu)
  • Is an céim nó déine teas atá ann sa substaint nó oibiacht é teocht. (ga)
  • La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique). La température est une variable importante dans d’autres disciplines : météorologie et climatologie, médecine, et chimie. L’échelle de température la plus courante est le degré Celsius, dans laquelle la glace (formée d'eau) fond à 0 °C et l'eau bout à environ +100 °C dans les conditions standard de pression. Dans les pays utilisant le système impérial (anglo-saxon) d’unités, on emploie le degré Fahrenheit où la glace fond à +32 °F et l'eau bout à +212 °F. L’unité du Système international d'unités (SI), d’utilisation scientifique et définie à partir du zéro absolu, est le kelvin dont la graduation est presque identique à celle des degrés centigrades. (fr)
  • Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut. Suhu juga disebut temperatur yang diukur dengan alat termometer. Empat macam termometer yang paling dikenal adalah Celsius, Reaumur, Fahrenheit dan Kelvin. Perbandingan antara satu jenis termometer dengan termometer lainnya mengikuti: Karena dari Kelvin ke derajat Celsius, Kelvin dimulai dari 273 derajat, bukan dari -273 derajat. Dan derajat Celsius dimulai dari 0 derajat.Suhu Kelvin sama perbandingan nya dengan derajat Celsius yaitu 5:5, maka dari itu, untuk mengubah suhu tersebut ke suhu yang lain, sebaiknya menggunakan atau mengubahnya ke derajat Celsius terlebih dahulu, karena jika kita menggunakan Kelvin akan lebih rumit untuk mengubahnya ke suhu yang lain.Contoh: daripada Sebagai contoh: dan . (in)
  • La temperatura di un corpo può essere definita come una misura dello stato di agitazione delle entità molecolari delle quali è costituito. In altre parole, la temperatura è una proprietà fisica intensiva, definibile per mezzo di una grandezza fisica scalare (ovvero non dotata di direzione e verso), che indica lo di un sistema. Essa inoltre può essere utilizzata per prevedere la direzione verso la quale avviene lo scambio termico tra due corpi. Infatti la differenza di temperatura tra due sistemi, che sono in contatto termico, determina un flusso di calore in direzione del sistema meno caldo (o più freddo), che continua finché non si sia raggiunto l'equilibrio termico, in corrispondenza del quale i due sistemi hanno la stessa temperatura. (it)
  • 温度(おんど、英語: temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性があるため、実際には絶対零度(に極めて近い低温)になっても分子運動が止まることはない。 温度は、化学反応において強い影響力を持つ。また、生物にはそれぞれがあり、ごく狭い範囲の温度の環境下でしか生存できない。化学や生物学における観察や実験では、基礎的な条件として温度を記録する必要があり、あるいは温度を調整することが実験を成立させる重要な条件となる。また、生物学や医学において組織や検体を冷蔵するのは、温度を下げることで化学変化の速度を抑える意味がある。 (ja)
  • 온도(溫度, 라틴어·스페인어·포르투갈어: Temperatura, 독일어: Temperatur, 영어·프랑스어: temperature)는 물질의 뜨겁고 찬 정도를 나타내는 물리량이다. 온도는 물리학에서 가장 기초적이고 중요한 물리량 중 하나이다. 온도는 일반적으로 다음 두 가지 방법으로 정의된다. 일반적인 정의의 온도는 온도의 경험적인 개념과, 독립적인 온도의 존재성을 보장하는 열역학 법칙중 제 0법칙에 기초한다. 일반적인 정의의 온도는 온도의 기준을 통해 만들어진 온도계로 측정되는 값이다. 열역학적 정의의 온도는 19세기 중반 열기관과 열역학에서 이어지는 통계역학이 발전되면서 에너지와 엔트로피간의 이해가 높아지면서 파생되어 나왔다. 열역학적 정의의 온도는 에너지를 엔트로피로 편미분한 값으로 나타내지며, 다양한 기초적인 물리법칙과 근본적으로 관련되어있다. 열역학적 정의의 온도는 계의 평형이 이뤄지지 않으면 정의할 수 없다. 온도의 국제 단위는 켈빈(K)이다. 켈빈은 물의 삼중점의 열역학적 온도의 1/273.16으로 정의된다. 일반적인 정의에 사용되는 온도 기준에 열역학적 정의의 온도를 사용함으로써 일반적인 정의의 온도라도 물리학적인 의미, 다양한 기초적인 물리법칙과의 관련성을 만들 수 있다. (ko)
  • Temperature is a physical property of matter that quantitatively expresses hot and cold. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, a flow of energy, when a body is in contact with another that is colder. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have used various reference points and thermometric substances for definition. The most common scales are the Celsius scale (formerly called centigrade, denoted °C), the Fahrenheit scale (denoted °F), and the Kelvin scale (denoted K), the last of which is predominantly used for scientific purposes by conventions of the International System of Units (SI). The lowest theoretical temperature is absolute zero, at which no more thermal energy can be extracted from a body. Experimentally, it can only be approached very closely, but not reached, which is recognized in the third law of thermodynamics. Temperature is important in all fields of natural science, including physics, chemistry, Earth science, medicine, and biology, as well as most aspects of daily life. (en)
  • Temperatuur is een maat voor hoe warm of koud iets is. Natuurkundig gezien is het een maat voor de gemiddelde chaotische bewegingsenergie per molecuul, plus de beweging van atomen in moleculen. Het woord wordt ook specifiek gebruikt in de betekenissen koorts en buitenluchttemperatuur. (nl)
  • Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii. Temperaturę można ściśle zdefiniować tylko dla stanów równowagi termodynamicznej, bowiem z termodynamicznego punktu widzenia jest ona wielkością reprezentującą wspólną własność dwóch układów pozostających w równowadze ze sobą. Temperatura jest miarą stanu cieplnego danego ciała. Jeśli dwa ciała mają tę samą temperaturę, to w bezpośrednim kontakcie nie przekazują sobie ciepła, gdy zaś temperatura obu ciał jest różna, to następuje przekazywanie ciepła z ciała o wyższej temperaturze do ciała o niższej – aż do wyrównania się temperatury obu ciał. (pl)
  • Temperatura é uma grandeza física que mensura a energia cinética média de cada grau de liberdade de cada uma das partículas de um sistema em equilíbrio térmico. Em sistemas constituídos apenas por partículas idênticas essa definição associa-se diretamente à medida da energia cinética média por partícula do sistema em equilíbrio térmico. Esta definição é análoga a afirmar-se que a temperatura mensura a energia cinética média por grau de liberdade de cada partícula do sistema uma vez consideradas todas as partículas de um sistema em equilíbrio térmico em um certo instante. A rigor, a temperatura é definida apenas para sistemas em equilíbrio térmico. O Sistema Internacional de Unidades estabelece uma escala específica para a temperatura absoluta. Utiliza-se a escala kelvin para a mensura, com o ponto triplo da água a 273,16 K como o ponto fundamental de fixação. Outras escalas forem sendo utilizadas historicamente. A escala de Rankine, que utiliza o grau Fahrenheit como unidade de intervalo, está ainda em uso como parte do sistemas de unidades inglesas de engenharia em alguns campos de estudo nos Estados Unidos. A Escala Internacional de Temperaturas de 1990 (ITS-90) fornece meios práticos de se estimar a temperatura termodinâmica com um elevado grau de precisão. Dentro do formalismo da termodinâmica, que leva em conta apenas grandezas macroscopicamente mensuráveis, a temperatura é, de forma equivalente, definida como a derivada parcial da energia interna em relação à entropia para um sistema em equilíbrio termodinâmico: (pt)
  • Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел. Живые существа способны воспринимать ощущения тепла и холода непосредственно, с помощью органов чувств. Однако точное определение температуры требует, чтобы температура измерялась объективно, с помощью приборов. Такие приборы называются термометрами и измеряют так называемую эмпирическую температуру. В эмпирической шкале температур устанавливаются две реперные точки и число делений между ними — так были введены используемые ныне шкалы Цельсия, Фаренгейта и другие. Измеряемая в кельвинах абсолютная температура вводится по одной реперной точке с учётом того, что в природе существует минимальное предельное значение температуры — абсолютный нуль. Верхнее значение температуры ограничено планковской температурой. Если система находится в тепловом равновесии, то температура всех её частей одинакова. В противном случае в системе происходит передача энергии от более нагретых частей системы к менее нагретым, приводящая к выравниванию температур в системе, и говорят о распределении температуры в системе или скалярном поле температур. В термодинамике температура — интенсивная термодинамическая величина. Наряду с термодинамическим, в других разделах физики могут вводиться и другие определения температуры. В молекулярно-кинетической теории показывается, что температура пропорциональна средней кинетической энергии частиц системы. Температура определяет распределение частиц системы по уровням энергии (см. Статистика Максвелла — Больцмана), распределение частиц по скоростям (см. Распределение Максвелла), степень ионизации вещества (см. Уравнение Саха), спектральную плотность излучения (см. Формула Планка), полную объёмную плотность излучения (см. Закон Стефана — Больцмана) и т. д. Температуру, входящую в качестве параметра в распределение Больцмана, часто называют температурой возбуждения, в распределение Максвелла — кинетической температурой, в формулу Саха — ионизационной температурой, в закон Стефана — Больцмана — радиационной температурой. Для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, и их называют просто температурой системы. В Международной системе величин (англ. International System of Quantities, ISQ) термодинамическая температура выбрана в качестве одной из семи основных физических величин системы. В Международной системе единиц (СИ), основанной на Международной системе величин, единица этой температуры — кельвин — является одной из семи основных единиц СИ. В системе СИ и на практике используется также температура Цельсия, её единицей является градус Цельсия (°С), по размеру равный кельвину. Это удобно, так как большинство климатических процессов на Земле и процессов в живой природе связаны с диапазоном от −50 до +50 °С. (ru)
  • Temperatur är en fysikalisk storhet och ett mått på det som vanligtvis uppfattas som värme och kyla. Värmeflödet är från en högre temperatur till en lägre temperatur. Vid lika temperatur är föremål i termisk jämvikt, se termodynamikens nollte huvudsats. Vidare kan också olika färgtoner av ljus mätas i så kallad färgtemperatur. (sv)
  • 温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。 (zh)
  • Температу́ра (від лат. temperatura — належне змішування, нормальний стан) — фізична величина, яка описує стан термодинамічної системи. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 20647050 (xsd:integer)
dbo:wikiPageLength
  • 95459 (xsd:integer)
dbo:wikiPageRevisionID
  • 985032313 (xsd:integer)
dbo:wikiPageWikiLink
dbp:b
  • no (en)
dbp:c
  • Category:Temperature (en)
dbp:caption
  • Two thermometers showing temperature in Celsius and Fahrenheit. (en)
dbp:d
  • Q11466 (en)
dbp:derivations
  • , (en)
dbp:dimension
  • Θ (en)
dbp:e
  • 12 (xsd:integer)
dbp:intensive
  • Yes (en)
dbp:m
  • no (en)
dbp:mw
  • no (en)
dbp:n
  • no (en)
dbp:name
  • Temperature (en)
dbp:otherunits
dbp:q
  • no (en)
dbp:s
  • no (en)
dbp:symbols
  • T (en)
dbp:u
  • K (en)
dbp:unit
dbp:v
  • Temperature (en)
dbp:voy
  • no (en)
dbp:wikiPageUsesTemplate
dbp:wikt
  • temperature (en)
dct:subject
rdf:type
rdfs:comment
  • درجة حرارة هي مؤشر على كمية الطاقة الحرارية التي يختزنها الجسم كما أنها مؤشر على مدى حركية ذراته حيث يمكن رياضياً إيجاد معادلة تصل بين الطاقة الحركية لجزيئات أو ذرات جسم ما ودرجة حرارته. هناك العديد من الوحدات لقياس درجة الحرارة مثل الكلفن و السيلزيوس و درجة الحرارة هي مقياس مدى سخونة جسم ما أو برودته، وهي التي تحدد اتجاه انتقال الحرارة تلقائيا، إلا أنه ممكن استنفاذ شغل لنقلها في الاتجاه المعاكس. (ar)
  • Θερμοκρασία είναι το φυσικό μέγεθος που μετρά τη μέση κινητική ενέργεια από μεταφορά ,ταλάντωση ή περιστροφή των δομικών λίθων (ατόμων,μορίων,ιόντων) της ύλης . Η μεταφορά της ενέργειας αυτής (θερμότητας), όταν πιάνουμε κάτι με το χέρι για παράδειγμα, μας δίνει την αίσθηση του ζεστού και του κρύου με την κατάσταση αύξησης ενέργειας να αντιστοιχεί στο «ζεστό» ή «θερμό», όταν συνολικά παίρνουμε ενέργεια, και της κατάστασης μείωσης ενέργειας, κατά την οποία αντιλαμβανόμαστε να χάνουμε συνολικά ενέργεια, να αντιστοιχεί στο «κρύο». (el)
  • Temperaturo estas fizika eco de materio, la bazo de la komunaj nocioj "varma" kaj "malvarma". Aĵo kun alta temperaturo sentiĝas varma, aĵo kun malalta temperaturo sentiĝas malvarma. Temperaturo difiniĝas plurmaniere kiel la nivelo de terma agitado ( de gasoj), aŭ laŭ la ekvilibro de termaj transferoj inter pluraj sistemoj, aŭ ankoraŭ per la entropio en termodinamiko. (eo)
  • Is an céim nó déine teas atá ann sa substaint nó oibiacht é teocht. (ga)
  • 温度(おんど、英語: temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性があるため、実際には絶対零度(に極めて近い低温)になっても分子運動が止まることはない。 温度は、化学反応において強い影響力を持つ。また、生物にはそれぞれがあり、ごく狭い範囲の温度の環境下でしか生存できない。化学や生物学における観察や実験では、基礎的な条件として温度を記録する必要があり、あるいは温度を調整することが実験を成立させる重要な条件となる。また、生物学や医学において組織や検体を冷蔵するのは、温度を下げることで化学変化の速度を抑える意味がある。 (ja)
  • Temperatuur is een maat voor hoe warm of koud iets is. Natuurkundig gezien is het een maat voor de gemiddelde chaotische bewegingsenergie per molecuul, plus de beweging van atomen in moleculen. Het woord wordt ook specifiek gebruikt in de betekenissen koorts en buitenluchttemperatuur. (nl)
  • Temperatur är en fysikalisk storhet och ett mått på det som vanligtvis uppfattas som värme och kyla. Värmeflödet är från en högre temperatur till en lägre temperatur. Vid lika temperatur är föremål i termisk jämvikt, se termodynamikens nollte huvudsats. Vidare kan också olika färgtoner av ljus mätas i så kallad färgtemperatur. (sv)
  • 温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。 (zh)
  • Температу́ра (від лат. temperatura — належне змішування, нормальний стан) — фізична величина, яка описує стан термодинамічної системи. (uk)
  • La temperatura és una magnitud física de la matèria que expressa quantitativament les nocions comunes de calor i fred. Els objectes de baixa temperatura són freds, mentre que els nivells de temperatures més altes es coneixen amb els noms de tebi o calent. La temperatura es mesura quantitativament amb termòmetres, que poden ser calibrats respecte a diferents escales de temperatura. (ca)
  • Teplota je charakteristika tepelného stavu hmoty. V obecném významu je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. V přírodních a technických vědách a jejich aplikacích je to skalární intenzivní veličina, která je vzhledem ke svému pravděpodobnostnímu charakteru vhodná k popisu stavu ustálených makroskopických systémů.Teplota souvisí s kinetickou energií částic látky. K měření teploty se používají teploměry. (cs)
  • Die Temperatur ist eine physikalische Größe zur Beschreibung der atomaren Bewegungsenergie und spielt in der Thermodynamik eine wichtige Rolle. Ihre SI-Einheit ist das Kelvin (K). In Deutschland, Österreich und der Schweiz werden Temperaturen meist in der Einheit Grad Celsius (°C) angegeben. (de)
  • Tenperatura magnitude fisiko bat da, termometroen bidez neurtzen dena; zehatzago deiturik, tenperatura termodinamikoa deritzo. Eguneroko bizimodu arruntean, tenperatura giza gorputzaren eta ingurumenaren arteko trasferentzia termikoa adierazten duten hotz- eta bero-sentsazioekin erlazionaturik dago. Fisikan, zenbait modu desberdinetan definitzen da: Proteina baten bibrazio termikoaren simulazioa. Bibrazioaren anplitudea handiagotu egiten da tenperatura igo ahala. * Gas baten tenperaturak bere barneko atomo eta molekulen higiduraren eta bibrazioen energiaren neurria adierazten du. (eu)
  • La temperatura es una magnitud referida a la noción de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como energía cinética, que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que sea mayor la energía cinética de un sistema, se observa que este se encuentra más «caliente»; es decir, que su temperatura es mayor. (es)
  • Temperature is a physical property of matter that quantitatively expresses hot and cold. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, a flow of energy, when a body is in contact with another that is colder. The lowest theoretical temperature is absolute zero, at which no more thermal energy can be extracted from a body. Experimentally, it can only be approached very closely, but not reached, which is recognized in the third law of thermodynamics. (en)
  • La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique). La température est une variable importante dans d’autres disciplines : météorologie et climatologie, médecine, et chimie. (fr)
  • Suhu menunjukkan derajat panas benda. Mudahnya, semakin tinggi suhu suatu benda, semakin panas benda tersebut. Secara mikroskopis, suhu menunjukkan energi yang dimiliki oleh suatu benda. Setiap atom dalam suatu benda masing-masing bergerak, baik itu dalam bentuk perpindahan maupun gerakan di tempat getaran. Makin tingginya energi atom-atom penyusun benda, makin tinggi suhu benda tersebut. daripada Sebagai contoh: dan . (in)
  • 온도(溫度, 라틴어·스페인어·포르투갈어: Temperatura, 독일어: Temperatur, 영어·프랑스어: temperature)는 물질의 뜨겁고 찬 정도를 나타내는 물리량이다. 온도는 물리학에서 가장 기초적이고 중요한 물리량 중 하나이다. 온도는 일반적으로 다음 두 가지 방법으로 정의된다. 일반적인 정의의 온도는 온도의 경험적인 개념과, 독립적인 온도의 존재성을 보장하는 열역학 법칙중 제 0법칙에 기초한다. 일반적인 정의의 온도는 온도의 기준을 통해 만들어진 온도계로 측정되는 값이다. 열역학적 정의의 온도는 19세기 중반 열기관과 열역학에서 이어지는 통계역학이 발전되면서 에너지와 엔트로피간의 이해가 높아지면서 파생되어 나왔다. 열역학적 정의의 온도는 에너지를 엔트로피로 편미분한 값으로 나타내지며, 다양한 기초적인 물리법칙과 근본적으로 관련되어있다. 열역학적 정의의 온도는 계의 평형이 이뤄지지 않으면 정의할 수 없다. (ko)
  • La temperatura di un corpo può essere definita come una misura dello stato di agitazione delle entità molecolari delle quali è costituito. In altre parole, la temperatura è una proprietà fisica intensiva, definibile per mezzo di una grandezza fisica scalare (ovvero non dotata di direzione e verso), che indica lo di un sistema. (it)
  • Temperatura – jedna z podstawowych wielkości fizycznych (parametrów stanu) w termodynamice. Temperatura jest związana ze średnią energią kinetyczną ruchu i drgań wszystkich cząsteczek tworzących dany układ i jest miarą tej energii. Temperaturę można ściśle zdefiniować tylko dla stanów równowagi termodynamicznej, bowiem z termodynamicznego punktu widzenia jest ona wielkością reprezentującą wspólną własność dwóch układów pozostających w równowadze ze sobą. (pl)
  • Temperatura é uma grandeza física que mensura a energia cinética média de cada grau de liberdade de cada uma das partículas de um sistema em equilíbrio térmico. Em sistemas constituídos apenas por partículas idênticas essa definição associa-se diretamente à medida da energia cinética média por partícula do sistema em equilíbrio térmico. Esta definição é análoga a afirmar-se que a temperatura mensura a energia cinética média por grau de liberdade de cada partícula do sistema uma vez consideradas todas as partículas de um sistema em equilíbrio térmico em um certo instante. A rigor, a temperatura é definida apenas para sistemas em equilíbrio térmico. (pt)
  • Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел. (ru)
rdfs:label
  • Temperature (en)
  • درجة حرارة (ar)
  • Temperatura (ca)
  • Teplota (cs)
  • Temperatur (de)
  • Θερμοκρασία (el)
  • Temperaturo (eo)
  • Temperatura (es)
  • Tenperatura (eu)
  • Température (fr)
  • Teocht (ga)
  • Suhu (in)
  • Temperatura (it)
  • 温度 (ja)
  • 온도 (ko)
  • Temperatuur (nl)
  • Temperatura (pl)
  • Температура (ru)
  • Temperatura (pt)
  • Temperatur (sv)
  • Температура (uk)
  • 温度 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:caption of
is dbp:quantity of
is dbp:served of
is rdfs:seeAlso of
is foaf:primaryTopic of