An Entity of Type: species, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quark–antiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom, and thus the Hagedorn temperature would be an impassable absolute hot. However, if this phase is viewed as quarks instead, it becomes apparent that the matt

Property Value
dbo:abstract
  • The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quark–antiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom, and thus the Hagedorn temperature would be an impassable absolute hot. However, if this phase is viewed as quarks instead, it becomes apparent that the matter has transformed into quark matter, which can be further heated. The Hagedorn temperature, TH, is about 150 MeV/kB or about 1.7×1012 K, the same as the mass–energy of the lightest hadrons, the pion. Matter at Hagedorn temperature or above will spew out fireballs of new particles, which can again produce new fireballs, and the ejected particles can then be detected by particle detectors. This quark matter has been detected in heavy-ion collisions at SPS and LHC in CERN (France and Switzerland) and at RHIC in Brookhaven National Laboratory (USA). In string theory, a separate Hagedorn temperature can be defined for strings rather than hadrons. This temperature is extremely high (1030 K) and thus of mainly theoretical interest. (en)
  • La temperatura de Hagedorn, en física teórica, es la temperatura en la que la materia hadrónica (es decir, la materia ordinaria) deja de ser estable, y debe o bien "evaporarse" o convertirse en materia quark; por lo tanto se puede considerar como el "punto de ebullición" de la materia hadrónica. La temperatura de Hagedorn existe porque la cantidad de energía disponible es suficientemente elevada para que se puedan formar pares de partículas (quark-antiquark) espontáneamente del vacío. Por lo tanto, desde un punto de vista ingenuo, un sistema que se encuentre a la temperatura de Hagedorn puede acumular tanta energía como se quiera, dado que los nuevos quarks formados proporcionan nuevos grados de libertad, y la temperatura de Hagedorn constituiría un límite superior de temperatura. Sin embargo, en términos de los quarks, es evidente que la materia se ha transformado en materia quark, que se puede seguir calentando. La temperatura de Hagedorn se corresponde con la masa-energía del hadrón más ligero, el pión, con 130-140 MeV por partícula o aproximadamente 2 × 1012 K.​ Este rango de energía se alcanza de manera rutinaria en aceleradores de partículas como el LHC del CERN. La materia a la temperatura de Hagedorn o superior emite de nuevas partículas, que a su vez pueden producir nuevos jets, y las partículas eyectadas pueden ser detectadas en los detectores de partículas. Se ha detectado materia quark en colisiones de iones pesados en los aceleradores SPS y LHC del CERN (Francia y Suiza) y en el acelerador RHIC del Brookhaven National Laboratory (Estados Unidos). En teoría de cuerdas, se define otra temperatura de Hagedorn para cuerdas en vez de hadrones. Esta temperatura es excesivamente alta (1030 K) y solamente tiene interés teórico.​ (es)
  • 통계역학에서 하게도른 온도(Hagedorn溫度, 영어: Hagedorn temperature)는 가 무한대로 발산하게 되는 유한한 온도이다. 만약 이 분배 함수가 완전히 정확하다면 이는 통계역학적 계가 도달할 수 있는 최대 온도를 의미하겠지만, 보통 이는 분배 함수의 묘사가 더 이상 정확하지 않게 되는 상전이의 존재를 의미한다. (ko)
dbo:wikiPageID
  • 2695487 (xsd:integer)
dbo:wikiPageLength
  • 7169 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1112869549 (xsd:integer)
dbo:wikiPageWikiLink
dbp:e
  • 30 (xsd:integer)
dbp:u
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 통계역학에서 하게도른 온도(Hagedorn溫度, 영어: Hagedorn temperature)는 가 무한대로 발산하게 되는 유한한 온도이다. 만약 이 분배 함수가 완전히 정확하다면 이는 통계역학적 계가 도달할 수 있는 최대 온도를 의미하겠지만, 보통 이는 분배 함수의 묘사가 더 이상 정확하지 않게 되는 상전이의 존재를 의미한다. (ko)
  • La temperatura de Hagedorn, en física teórica, es la temperatura en la que la materia hadrónica (es decir, la materia ordinaria) deja de ser estable, y debe o bien "evaporarse" o convertirse en materia quark; por lo tanto se puede considerar como el "punto de ebullición" de la materia hadrónica. La temperatura de Hagedorn existe porque la cantidad de energía disponible es suficientemente elevada para que se puedan formar pares de partículas (quark-antiquark) espontáneamente del vacío. Por lo tanto, desde un punto de vista ingenuo, un sistema que se encuentre a la temperatura de Hagedorn puede acumular tanta energía como se quiera, dado que los nuevos quarks formados proporcionan nuevos grados de libertad, y la temperatura de Hagedorn constituiría un límite superior de temperatura. Sin emba (es)
  • The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quark–antiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom, and thus the Hagedorn temperature would be an impassable absolute hot. However, if this phase is viewed as quarks instead, it becomes apparent that the matt (en)
rdfs:label
  • Temperatura de Hagedorn (es)
  • Hagedorn temperature (en)
  • 하게도른 온도 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License