About: Rocket engine

An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidizer, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

Property Value
dbo:abstract
  • الصاروخ هو جسم طائر يعمل على مبدأ الاندفاع عن طريق رد الفعل لانفجارات تتم في غرفة الاحتراق كما هو مبين في الأسفل وهو مبدأي ذاتي، غير مرتبط بوجود هواء يحيط بالصاروخ ؛ أي أن الصاروخ أو الدفع الصاروخي يعمل أيضا في الفضاء الخالي من الهواء مثلا (حين لا يحتاج احتراق الوقود للهواء). وهو يتميز عن القذيفة في أن مرحلة التسارع لدى الصاروخ أطول وكذلك الحال بالنسبة للمدى.ويختلف حجم الصاروخ من صواريخ الألعاب النارية مرورا بالصواريخ العسكرية إلى الصواريخ العملاقة كصاروخ زحل 5 الذي استعمل في استكشاف القمر خلال مشروع أبولو. (ar)
  • Un coet és un grup autònom propulsat per la força de reacció creada mitjançant l'ejecció de massa en una direcció determinada. Els coets són coneguts principalment per la seva aplicació en el camp de l'astronàutica, ja que constitueixen l'únic mitjà existent per posar objectes en òrbita fora de l'atmosfera terrestre. (ca)
  • Raketový motor je typ tepelného motoru, který pracuje na principu akce a reakce. Na rozdíl od většiny ostatních reaktivních motorů není závislý na atmosférickém kyslíku, a tak je schopen se pohybovat mimo atmosféru. Může být poháněn tuhými a kapalnými palivy. (cs)
  • Raketa je létající stroj, který se pohybuje pouze na principu akce a reakce. Je poháněna raketovým motorem. Rakety různých typů se využívají především v kosmickém výzkumu a vojenství, ale i pro zábavu (ohňostroj). (cs)
  • Eine Rakete (italienisch rocchetta ‚Spindel‘, woraus durch Conrad Haas der Begriff Rackette entstand) ist ein Flugkörper mit Rückstoßantrieb (Raketenantrieb). Der Antrieb kann auch während des Betriebs unabhängig von externer Stoffzufuhr (beispielsweise Oxidator) arbeiten und daher die Rakete auch im luftleeren Raum beschleunigen. Im Gegensatz zu Geschossen haben Raketen (vergleichsweise) lange Beschleunigungsphasen. Die dadurch deutlich geringere Belastung ermöglicht eine entsprechend leichtere Struktur. Raketen gibt es in Größen von handlichen Feuerwerksraketen bis hin zu den riesigen Raketen in der Raumfahrt wie der Energija oder der Saturn V, die im Apollo-Programm, dem bemannten Flug zum Mond, eingesetzt wurde. Raketen werden insbesondere als militärische Waffe, in der Raumfahrt, als Signalrakete oder als Feuerwerkskörper eingesetzt. Hat eine Rakete eine sehr umfassende Eigensteuerung und kann zum Beispiel beweglichen Zielen folgen, dann gehört sie zu den Lenkflugkörpern. (de)
  • Ο πύραυλος (ή ρουκέτα) είναι βλήμα, που προωθείται εκτοξεύοντας αέρια που προέρχονται από καύση στερεών ή υγρών καυσίμων. Η λειτουργία του στηρίζεται στη θεωρία του Νεύτωνα περί δράσης και αντίδρασης, με βάση και την αρχή διατήρησης της ορμής. Η ταχύτητα τού πυραύλου καθορίζεται από το μέγεθός του και την ταχύτητα με την οποία εξέρχονται τα αέρια. Η καύση γίνεται με τη βοήθεια του οξυγόνου, που εναποθηκεύεται σε υγρή μορφή μέσα στον πύραυλο, και άλλων ουσιών που δρουν σαν . (el)
  • Raketo (vorto derivita de la itala vorto rocchetta, "eta fuzeo") estas misilo, kosmoŝipo, flugaparato, aŭ alia veturilo kiu gajnas malantaŭenpuŝon de raketomotoro. (eo)
  • Raketentriebwerke oder auch Raketenmotoren sind Antriebe, die die Antriebskraft (Schub) durch Ausstoßen von Stützmasse entgegen der Antriebsrichtung erzeugen. Weil sie dabei keine Materie von außen ansaugen und beschleunigt wieder ausstoßen, funktionieren sie unabhängig von der Umgebung, also auch im Vakuum. Sie wurden ursprünglich für den Flug von Raketen entwickelt. Der Arbeit des Raketentriebwerks liegt das Rückstoßprinzip (siehe auch Rückstoßantrieb) im Rahmen des dritten newtonschen Axioms zugrunde. Je höher die Geschwindigkeit der ausgestoßenen Stützmasse ist, desto effizienter ist das Triebwerk und desto größer ist die mögliche Geschwindigkeitsänderung „Delta v“ der Rakete. Raketentriebwerke kommen nicht nur als Antriebe von Raketen, Trägerraketen, Raumfahrzeugen zur Anwendung, sondern auch bei Flugzeugen und speziellen Landfahrzeugen (z. B. Raketenautos). Weit verbreitet sind Raketentriebwerke im militärischen Bereich, wo sie als Antrieb von ballistischen Raketen oder reaktiven Geschossen (etwa von Raketenwerfern) oder zum Antrieb von reaktiven Torpedos eingesetzt werden. Es existieren verschiedene Ausführungen von Raketentriebwerken und zahlreiche Bemühungen, die benötigten Betriebsmittel von Raketentriebwerken zu reduzieren (siehe Aerospike). Theoretische Effekte, die bei einem Raketenantrieb zu verzeichnen sind, wurden 1903 von Konstantin Ziolkowski mit der Raketengrundgleichung dargestellt. Später kam Hermann Oberth unabhängig davon zu den gleichen Erkenntnissen. (de)
  • Un cohete es un vehículo que obtiene su empuje por la reacción de la expulsión rápida de gases de combustión desde un motor cohete. A ciertos tipos de cohete se los denomina misil y en este cambio de nombre no interviene el tamaño o potencia, sino que generalmente se llama misil a todo cohete de uso militar con capacidad de ser dirigido o manejado activamente para alcanzar un blanco. Para esos usos militares, los cohetes suelen usar propelente sólido y no usan ningún tipo de guía. Los cohetes equipados con cabezas de guerra (en forma de misil) pueden ser disparados por aviones hacia objetivos fijos tales como edificios, o pueden ser lanzados por fuerzas terrestres hacia otros objetivos terrestres. Durante la Guerra Fría existían cohetes no guiados que portaban una carga nuclear, estaban diseñados para atacar formaciones de bombarderos en vuelo. En el argot militar se prefiere la palabra misil en lugar de cohete cuando el arma usa propelente sólido o líquido y tiene un sistema de guía (esta distinción no se suele aplicar a los vehículos civiles). En todos los cohetes, los gases de combustión están formados por propelente, el cual se lleva en el interior del cohete antes de su liberación. El empuje de los cohetes se debe a la aceleración de los gases de combustión (ver tercera ley del movimiento de Newton). Hay muchos tipos diferentes de cohetes, su tamaño puede variar desde los pequeños modelos de juguete que pueden comprarse en tiendas, hasta los enormes cohetes espaciales Saturno V usados por el programa Apolo. Los cohetes se usan para acelerar, cambiar las órbitas, órbitas de reentrada, para el aterrizaje completo si no hay atmósfera (e.j. aterrizaje en la Luna), y algunas veces para suavizar un aterrizaje con paracaídas justo antes del impacto en tierra (véase Soyuz). Muchos de los cohetes actuales obtienen su empuje de reacciones químicas (motor de combustión interna). Un motor cohete químico puede usar propelente sólido, líquido o una mezcla de ambos. Una reacción química se inicia entre el combustible y el oxidante en la cámara de combustión, y el resultado son los gases calientes que se aceleran a través de una tobera (o toberas) en la parte final del cohete. La aceleración de estos gases a través del esfuerzo del motor (empuje) en la cámara de combustión y en la tobera, haciendo que el vehículo se mueva (de acuerdo con la tercera Ley de Newton). No todos los cohetes usan reacciones químicas. Los cohetes de vapor, por ejemplo, liberan agua supercalentada a través de una tobera donde instantáneamente se proyecta en un vapor de alta velocidad, empujando al cohete. La eficiencia del vapor como propelente para cohetes es relativamente baja, pero es simple y razonablemente seguro, y el propelente es barato y se encuentra en cualquier parte del mundo. Muchos cohetes de vapor se han usado en vehículos terrestres pero un pequeño cohete de vapor se probó en el año 2004 llevando un satélite UK-DMC (Reino Unido). Hay propuestas para usar los cohetes de vapor para transportes interplanetarios usando energía solar o nuclear como fuente de calor para vaporizar agua recogida alrededor del sistema solar. Los cohetes en los cuales el calor se proporciona de otra manera que no sea un propelente, tales como los cohetes de vapor, se clasifican dentro de los motores de combustión externa. Otros ejemplos de combustión externa en cohetes incluyen la mayor parte de los diseños de cohetes de propulsión nuclear. El uso de hidrógeno como propelente para motores de combustión externa proporciona muy altas velocidades. Debido a su altísima velocidad (mach ~10+), los cohetes son especialmente útiles cuando se necesitan altas velocidades, como para llevar objetos a una órbita (mach 25). Las velocidades que puede alcanzar un cohete se pueden calcular con la ecuación del cohete de Tsiolskovski, que proporciona el diferencial de la velocidad ('delta-v') en términos de la velocidad y masa iniciales a la masa final. Los cohetes se deben usar cuando no hay otras sustancias (tierra, agua o aire) o fuerzas (gravedad, magnetismo, luz) que un vehículo pueda usar para propulsarse, como ocurre en el espacio. En estas circunstancias, es necesario llevar todo el propelente que se necesite usar. Las relaciones típicas de masa para vehículos son de 20/1 para propelentes densos tales como oxígeno líquido y keroseno, 25/1 para monopropelentes densos como peróxido de hidrógeno, y 10/1 para oxígeno líquido e hidrógeno líquido. No obstante, la relación de masa depende en gran medida de muchos factores tales como el tipo de motor del vehículo y sus márgenes de seguridad estructurales. Frecuentemente, la velocidad requerida (delta-v) para una misión es inalcanzable por un solo cohete porque el peso del propelente, la estructura, la guía y los motores es demasiado para conseguir una relación mejor. Este problema se soluciona frecuentemente con las etapas: en cada etapa se va perdiendo peso lanzando la parte ya consumida o utilizada, incrementando la relación de masa y potencia. Típicamente, la aceleración de un cohete aumenta con el tiempo (incluso si el empuje permanece constante) ya que el peso del cohete disminuye a medida que se quema su combustible. Las discontinuidades en la aceleración suceden cuando las diferentes etapas comienzan o terminan, a menudo comienzan con una menor aceleración cuando se dispara cada nueva etapa. (es)
  • Un motor cohete es un motor de reacción que genera empuje mediante la expulsión a la atmósfera de gases que provienen de la cámara de combustión. Los motores cohete incorporan tanto el combustible, que suele ser queroseno o hidrógeno líquido, como el comburente, (oxígeno en estado gaseoso o generalmente líquido). El motor cohete es el motor más potente conocido y su relación peso/potencia lo convierte en el motor ideal para ser usado en naves espaciales. (es)
  • Suziri bat errekuntzaz kanporatutako gasek bultzaturiko gailua da, batez ere piroteknian eta astronautikan erabiliak. Batzuetan misil ere deitzen zaie, baina izen hori bereziki arlo militarrean erabiltzen diren koheteetarako erabiltzen da. (eu)
  • Suziri motorra deritzo errekuntza ganberako gasak atmosferara kanporatzearen ondorioz bultzada sortzen duen erreakzio motorrari. Suziri motorrek erregaia eta erregarria erabiltzen dituzte. Erregaia kerosenoa edo izan ohi da, eta erregarria, berriz, oxigenoa, gas egoeran edo likido egoeran. Suziri motorra da motor guztietatik potentzia handienekoa, eta espazio ontzietan erabiltzeko motor ideala da, bere pisu-potentzia erlazioagatik. (eu)
  • Le moteur-fusée est un type de moteurs à réaction, c'est-à-dire un engin qui projette un fluide (gaz ou liquide) vers l'arrière, ce qui transmet par réaction une poussée au véhicule solidaire du moteur, de force égale et de direction opposée, vers l'avant. Le moteur-fusée présente la particularité d'expulser une matière qui est entièrement stockée dans le corps du véhicule. Ce type de moteur est en particulier utilisé par les fusées car, étant autosuffisant, il peut fonctionner dans un milieu dépourvu d'atmosphère, mais également par les missiles car il permet d'atteindre des vitesses très importantes. Généralement, un moteur fusée fonctionne en expulsant des gaz qui sont produits par une réaction chimique exothermique dans une chambre de combustion et qui sont accélérés par une tuyère de Laval. Les capacités d'un moteur-fusée sont principalement caractérisées par sa poussée, c'est‑à‑dire la force qu'il peut exercer, et son impulsion spécifique qui est la mesure de son rendement. Il existe de nombreuses catégories de moteurs-fusées : les principales sont les moteurs-fusées à ergols solides et les moteurs-fusées à ergols liquides. (fr)
  • Is feithicil í roicéad, diúracán nó eitleán a fhaigheann sá nó ropadh de réir Tríú Dlí Newton, nuair a phléascann gáis an-te amach ar chúl a innill. (ga)
  • Roket merupakan wahana luar angkasa, peluru kendali, atau kendaraan terbang yang mendapatkan dorongan melalui reaksi roket terhadap keluarnya secara cepat bahan fluida dari keluaran mesin roket. Aksi dari keluaran dalam ruang bakar dan nozle pengembang, mampu membuat gas mengalir dengan kecepatan hipersonik sehingga menimbulkan dorongan reaktif yang besar untuk roket (sebanding dengan reaksi balasan sesuai dengan Hukum Pergerakan Newton ke 3). Seringkali definisi roket digunakan untuk merujuk kepada mesin roket. Roket bermula untuk penggunaan militer dan rekreasipada abad ke-13 masehi. Penggunaan roket secara intensif untuk militer, industri dan ilmu pengetahuan dimulai pada awal abad ke-20, di mana teknologi peroketan mampu mengantarkan umat manusia menuju , termasuk mengantarkan manusia menginjakan kakinya ke bulan. Roket digunakan untuk kembang api, persenjataan, kursi penyelamat, kendaraan peluncur luar angkasa untuk Satelit buatan, kendaraan luar angkasa, dan eksplorasi ke planet lain. Walaupun kurang efisien dikecepatan rendah, roket mampu memberikan akselerasi luar biasa dan mencapai kecepatan sangat tinggi dengan efisiensi yang bisa diterima. Roket kimia menyimpan sejumlah besar energi dalam bentuk yang mudah dilepaskan dan bisa sangat berbahaya, tetapi desain, tes, pembuatan dan penggunaan yang berhati hati bisa meminimalkan risiko. Ukuran Roket berbeda dari model kecil yang bisa dibeli sebagai kembang api, atau roket hobi, sampai yang berukuran besar Saturn V yang digunakan untuk program Apollo. Kebanyakan roket saat ini adalah roket kimia. Mesin roket ini memerlukan bahan bakar padat atau cair, seperti bahan bakar cair Booster/penguat Pesawat ulang-alik dan mesin utamanya yang digunakan untuk melepaskan diri dari gravitasi bumi. Reaksi kimia dimulai di ruang bakar dengan bahan bakar (dengan udara atau oksigen bila di ruang angkasa) dan gas panas yang dihasilkan mengalir dengan tekanan tinggi keluar melalui saluran yang menuju ke arah belakang roket. Tekanan gas yang menyembur keluar inilah yang menghasilkan gaya dorong bagi roket sehingga roket dapat bergerak maju atau ke atas. Terdapat konsep jenis roket lain yang semakin sering digunakan di luar angkasa adalah pendorong ion, yang menggunakan energi elektromagnet bukan tenaga dari reaksi kimia. juga telah dibangun, tetapi tidak pernah digunakan. (in)
  • En astronautique, une fusée est un véhicule mû par un moteur-fusée de grande puissance qui lui permet de se déplacer dans l'espace proche, et notamment de placer en orbite une charge utile (satellite artificiel), voire d'échapper à l'attraction terrestre pour visiter différents corps célestes. Les fusées de l'astronautique sont généralement dotées de plusieurs étages mis à feu successivement. Les plus grosses fusées construites, comme Saturn V, permettent de placer jusqu'à 150 tonnes en orbite basse. La science des fusées a été théorisée par le Russe Constantin Tsiolkovski à la fin du XIXe siècle et mise en pratique dès 1935 par Hermann Oberth, puis par les chercheurs allemands durant la Seconde Guerre mondiale, pour la conception des premiers missiles balistiques V2. À compter de la fin des années 1950, les fusées ont été utilisées pour mettre en orbite des satellites à des fins commerciales, militaires, de télécommunication ou de recherche, et envoyer des sondes spatiales vers les autres planètes du système solaire, ou des hommes dans l'espace proche, ainsi que sur la Lune. (fr)
  • A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidizer, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles. Compared to other types of jet engine, rocket engines are the lightest and have the highest thrust, but are the least propellant-efficient (they have the lowest specific impulse). The ideal exhaust is hydrogen, the lightest of all elements, but chemical rockets produce a mix of heavier species, reducing the exhaust velocity. Rocket engines become more efficient at high speeds, due to the Oberth effect. (en)
  • In aeronautica, il motore a razzo (meno comune propulsore a razzo), o endoreattore, è un motore a reazione che sfrutta il principio di azione e reazione per produrre una spinta; si distingue dagli esoreattori (motori a reazione) per la caratteristica di immagazzinare il comburente in appositi serbatoi, o già miscelato con il combustibile.La maggior parte degli endoreattori sono motori a combustione interna. Nei paesi di lingua anglosassone, alcuni autori distinguono tra rocket engine (“motore a razzo” a combustibile liquido) e rocket motor (a combustibile solido). (it)
  • ロケット(英: rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル全体をロケットということも多い。日本では、地上から照射されたマイクロ波やレーザービームをリフレクターで反射し、空気の電離によるプラズマ発生時の爆発などを推進力とし、燃料を使わないローンチ・ヴィークルも「ロケット」と呼ばれる。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 また、ロケットの先端部に核弾頭や爆薬など軍用のペイロードを搭載して標的や目的地に着弾させる兵器は、日本では無誘導の場合は「ロケット弾」、誘導装置を持つものはミサイルとして区別される(「ロケット弾」を参照)。特に弾道飛行をして目的地に着弾させるミサイルは、弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは、国際社会から事実上の弾道ミサイル発射実験と見なされており、国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては、人工衛星打ち上げであってもロケットではなくミサイルと報道されている。また他国ではミサイルとされるところを、ロケットやその類語で呼称する国もある(「ロシア戦略ロケット軍」「中国人民解放軍ロケット軍」を参照)。 ロケットの語源は、イタリア語で「糸巻き」を意味する「rocchetto」に由来する。 イタリアで打ち上げられたロケット花火の形状が、機織り紡錘に似ていたところから、こう呼ばれるようになった。 (ja)
  • 로켓(rocket, 문화어: 로케트)은 로켓엔진에서 추력을 얻는 미사일, 우주선, 비행기 또는 다른 운송수단(vehicle)이다. 배출 가스를 빠르게 분사시켜 그 반작용으로 추력을 얻는 비행체를 말한다. 종종 로켓은 '로켓 엔진'을 지칭하는 말로도 쓰이며 군사적으로는 탄두를 싣고 적의 주요 건물, 기지등을 타격하기 위해 발사하는 미사일 중 고체 추진제를 사용하고 비유도 방식의 미사일에 한정하여 사용하기도 한다. 로켓이 다른 제트 엔진에 비해 유리한 점은 배출 가스의 속도와 크기가 크기 때문에 고속에 유리하다는 것이다. 마하 10 이상이면 로켓이 운용할 수 있는 유리한 추진 방법이고 지구 궤도 속도(마하 25)에 이를 수 있는 방법은 현실적으로 로켓이 유일하다. 또한 로켓만이 가지는 장점으로는 산소가 없는 곳에서 작동이 가능하다는 것이다. 로켓은 대기권 밖에서 운용할 때 산화제를 함께 적재하여 추진제를 연소시킨다. 로켓이 낼 수 있는 속도는 로켓 방정식으로 계산할 수 있다. 이 식을 통해 배출 가스 속도에 대한 속도 차이(delta-v)와 초기 중량과 최종 중량의 비(mass ratio)를 구할 수 있다. 이 두 가지 값은 로켓의 제원이나 기술을 서술할 때 자료로써 자주 사용된다. 로켓은 가속뿐 아니라 궤도 변경, 제진입과 착륙을 위한 궤도이탈, 공기가 없는 곳에서 착륙시 감속을 위한 용도로도 쓰인다. (ko)
  • 로켓엔진(rocket engine)은 저장된 추진제(propellant)를 고속으로 분출하여 반작용을 얻는 엔진의 일종을 의미한다. 로켓 엔진에는 연료와 함께 산화제가 공급되므로 외부에서 산소가 공급되지 않는 경우에도 작동하며, 우주선이나 미사일의 추진 등 우주공간에서 주로 쓰인다. 거의 대부분의 로켓엔진은 내연기관이며, 그렇지 않은 경우도 있다. 일군(一群)으로서의 로켓 엔진은 모든 엔진을 통틀어 배기 속도가 가장 높으며, 추력대비 무게가 가장 가벼우며, 매우 높은 속도에서 가장 효율적으로 에너지를 사용한다. 이들 로켓 엔진은 높은 배기 속도와 로켓 추진제의 상대적으로 낮은 비에너지(specific energy)로 추진력을 얻기 위해 추진제를 급격히 소비한다. (ko)
  • ロケットエンジンとは推進剤を噴射する事によってその反動で推力を得るエンジンである。ニュートンの第3法則に基づく。 同義語としてロケットモータがある。こちらは固体燃料ロケットエンジンの場合に用いられるのが一般的である。 (ja)
  • Rakieta to pojazd latający lub pocisk, napędzany silnikiem rakietowym. Obiekt ten uzyskuje siłę ciągu dzięki materii wyrzucanej z dużą prędkością. Na ogół są to gazy powstałe przy spalaniu paliwa. Czasem są to sprężone gazy lub przegrzana para. Siła działająca na rakietę (ciąg silnika rakietowego) jest wynikiem trzeciej zasady dynamiki Newtona. Często pojęcie rakiety jest używane w znaczeniu silnika rakietowego lub pocisku rakietowego. Rakiety służą między innymi do przenoszenia ładunku, np. statku kosmicznego, głowic bojowych, sztucznych satelitów w warunkach przestrzeni kosmicznej, gdzie nie ma żadnej zewnętrznej substancji, której pojazd mógłby użyć jako elementu napędzającego. Jest to obiekt latający poruszający się na zasadzie odrzutu, we współczesnej wersji napędzany silnikiem rakietowym. Może poruszać się zarówno w atmosferze ziemskiej, jak i poza nią, często osiągając prędkość wielokrotnie przekraczającą prędkość dźwięku. Zależnie od zastosowania rakiety dzielą się na: bojowe, czyli pociski rakietowe, rakiety nośne - do wynoszenia ładunków w przestrzeń kosmiczną, rakiety badawcze (np. do obserwacji meteorologicznych), rakiety startowe - ułatwiające start samolotu lub pocisku (po określonym czasie zwykle odrzucane), rakiety ratownicze (np. do przerzucania liny na ratowany statek). Główne elementy rakiety poza jej ładunkiem to: kadłub, silnik rakietowy, zbiornik materiałów pędnych do silnika, czasami układ kierowania oraz aparatura radiowa (głównie do łączności z Ziemią). Konstrukcja rakiet wymaga wysokich technologii. Przykładowo: komory spalania silników rakietowych muszą wytrzymać wysokie temperatury i ciśnienia. Silniki rakietowe na paliwo stałe mają prostą budowę i cechuje je duża niezawodność, toteż są często stosowane do napędu rakiet i pocisków rakietowych. Wadą silników rakietowych na paliwo stałe jest brak możliwości regulacji siły ciągu oraz mniejszy niż w silnikach na paliwo ciekłe stosunek uzyskiwanego ciągu do masy paliwa. Prototypem współczesnych rakiet były rakiety prochowe, najwcześniej (XIII w.) używane w Chinach, w Europie w XIV w. Miały one postać strzał zapalających zbudowane z rurek wypełnionych prochem. W ciągu kolejnych wieków rakiety używane były jako rodzaj artylerii, jako fajerwerki i środki sygnalizacyjne. Szybki rozwój techniki rakietowej i astronautyki nastąpił dopiero w XX w. W roku 1903 Konstantin Ciołkowski ogłosił teorię ruchu i zasady budowy rakiety kosmicznej. W latach 20. i 30. konstruktorzy prowadzili pracę nad silnikami rakietowymi na paliwo płynne i wkrótce zastosowano je w pociskach (1942, pociski V2, V-pociski), a następnie w rakietach kosmicznych. W czasie II wojny światowej walczące armie używały pocisków rakietowych artyleryjskich. Wielkie koszty rakiet kosmicznych miały wpływ na rozwój budowy wahadłowców. (pl)
  • Silnik rakietowy – rodzaj silnika odrzutowego, czyli wykorzystującego zjawisko odrzutu substancji roboczej, który nie pobiera w trakcie pracy żadnej substancji z otoczenia, dzięki czemu może pracować w próżni kosmicznej. Substancją roboczą mogą być produkty spalania (gazy spalinowe) powstałe przy utlenianiu paliwa (chemiczny silnik rakietowy), przy czym zarówno paliwo rakietowe, jak i utleniacz znajdują się w zbiornikach napędzanego urządzenia (tlen nie jest pobierany z atmosfery), dzięki czemu silnik może pracować w dowolnych warunkach, np. w przestrzeni kosmicznej i pod wodą. Mogą nią być też jony rozpędzane elektromagnetycznie (silnik jonowy) lub plazma, a nawet strumień fotonów (silnik fotonowy). Źródłem energii większości obecnych silników rakietowych są reakcje chemiczne (np. spalanie wodoru w tlenie). W silniku zbudowanym w ramach programu NERVA źródłem energii był reaktor jądrowy a czynnikiem roboczym wodór. W silnikach jonowych energia dostarczana jest w formie prądu elektrycznego z baterii słonecznych lub innego źródła prądu. Silnik rakietowy stosowany jest najczęściej w rakietach i promach kosmicznych oraz pociskach rakietowych. Ogólnie możemy podzielić silniki rakietowe zależnie od źródła ich energii i od substancji roboczej. Poniżej omówione są silniki, w których energia jest wynikiem reakcji chemicznej. (pl)
  • Um foguete espacial é uma máquina que se desloca expelindo atrás de si um fluxo de gás a alta velocidade. Por conservação da quantidade de movimento (massa multiplicada por velocidade), o foguete desloca-se no sentido contrário com velocidade tal que, multiplicada pela massa do foguete, o valor da quantidade de movimento é igual ao dos gases expelidos. Por extensão, o veículo, geralmente espacial, que possui motor(es) de propulsão deste tipo é denominado foguete, foguetão ou míssil. Normalmente, o seu objetivo é enviar objetos (especialmente satélites artificiais e sondas espaciais) e/ou naves espaciais e homens ao espaço (veja atmosfera). Um foguete é constituído por uma estrutura, um motor de propulsão por reação e uma carga útil. A estrutura serve para albergar os tanques de combustível e oxidante (comburente) e a carga útil. Chama-se também "foguete" ao motor de propulsão apenas. Existem várias formas de forçar os gases de escape para fora do foguete com energia suficiente para conseguir propulsionar o foguete para a frente (isto é, vários tipos de motor de foguete). O tipo mais comum, que inclui todos os foguetes espaciais que existem atualmente e que voaram até hoje, são os chamados foguetes químicos, que funcionam libertando a energia química contida no seu combustível através de processo de combustão. Estes foguetes necessitam de transportar também um comburente para fazer reagir com o combustível. Esta mistura de gases sobreaquecidos é, depois, expandida numa tubeira divergente, a Tubeira de Laval, também conhecida como , por forma a direcionar o gás em expansão para trás, e assim conseguir propulsionar o foguete para a frente. Existem, no entanto, outros tipos de motor, por exemplo os motores nucleares térmicos, que sobreaquecem um gás até altas temperaturas, utilizando o calor gerado por reações nucleares, em especial através do processo de fissão nuclear, onde o combustível nuclear é bombardeado com neutrões, levando a fissão do núcleos dos átomos. Esse gás é depois expandido na tubeira tal como nos foguetes químicos. Estes tipo de foguete foi desenvolvido e testado nos Estados Unidos durante a década de 1960, mas nunca chegou a ser utilizado. Os gases expelidos por este tipo de foguete podem ser radioativos, o que desaconselha o seu uso dentro da atmosfera terrestre, mas podem ser utilizados fora dela. Este tipo de foguete tem a vantagem de permitir eficiências muito superiores às dos foguetes químicos convencionais, uma vez que permitem acelerar os gases de escape a velocidades muito superiores. Atualmente, é a Rússia que se destaca no desenvolvimento dos motores nucleares térmicos, recuperando o antigo programa espacial soviético. (pt)
  • A propulsão do foguete (português brasileiro) ou foguetão (português europeu) se dá quando as substâncias químicas (hipergólicas ou não) são misturadas na válvula de ignição entrando em processo de combustão (espontânea no caso das hipergólicas ou forçadas nos outros casos), impulsionando o foguete. Motores de foguete se tornam mais eficientes em altas velocidades, devido ao efeito Oberth. (pt)
  • Een raket is een voorwerp voortgedreven door een reactiemotor met de benodigde reactiemassa aan boord. (nl)
  • Ракетный двигатель — реактивный двигатель, не использующий для своей работы из окружающей среды ни энергию, ни рабочее тело. Таким образом, РД – установка, имеющая источник энергий и запас рабочего тела и предназначенная для получения тяги путем преобразования любого вида энергий в кинетическую энергию рабочего тела. Ракетный двигатель — единственный практически освоенный способ вывода полезной нагрузки на орбиту вокруг Земли. Сила тяги в ракетном двигателе возникает в результате преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. В зависимости от вида энергии, преобразующейся в кинетическую энергию реактивной струи, различают химические ракетные двигатели, ядерные ракетные двигатели и электрические ракетные двигатели. Характеристикой эффективности ракетного двигателя является удельный импульс (в двигателестроении применяют несколько другую характеристику — удельная тяга) — отношение количества движения, получаемого ракетным двигателем, к массе израсходованного рабочего тела. Удельный импульс имеет размерность м/c, то есть размерность скорости. Для ракетного двигателя, работающего на расчетном режиме (при равенстве давления окружающей среды и давления газов на срезе сопла), удельный импульс численно равен скорости истечения рабочего тела из сопла. (ru)
  • En raketmotor är en motor som bland annat används för att driva fram rymdfarkoster. Raketmotorer är en vidareutveckling på jetmotorn och baseras teoretiskt på Newtons tredje lag om att varje kraft har en likvärdig motkraft. Medan vanliga jetmotorer (inom till exempel flyg) utnyttjar den syrgas, O2, som finns i atmosfärens lägre skikt (troposfären) för att kunna förbränna sitt bränsle (fotogen), så måste raketmotorn utöver bränsle även medföra syre. Syret kan vara i flytande form (vätskeraketmotorer), eller bundet i något kemiskt ämne (fastbränsleraketer). (sv)
  • Раке́тний двигу́н / руші́й — різновид реактивного двигуна, у якому робоче тіло (газ, продукти , потік іонів) міститься в об'єкті (ракеті). Практичне застосування мають переважно ракетні двигуни, у яких тяга створюється внаслідок спалювання палива, компонентами якого є пальне та окисник. Ракетні двигуни приводять у дію ракети-носії космічних кораблів та ракетних снарядів. Сопло ракет на твердому паливі має витримувати високі температури, тиск, абразивну та хімічну дію продуктів згоряння. Ракетний двигун на твердому паливі — це двигун одноразового використання. Тому він має бути якомога дешевший і надійніший та готовий до використання в будь-яку хвилину без профілактичного огляду, дозаправки чи ремонту. Температура біля стінок сопла досягає точки топлення вольфраму. Тому в сопло вкладають охолоджувані абляційним способом вкладні, виготовлені з композитних матеріалів на основі вольфраму чи графіту. Абляційне сопло не повинно в процесі роботи значно змінювати розмір, бо зміниться реактивна сила двигуна, можливе й аварійне руйнування сопла внаслідок потоншення стінок вкладня. Вольфрамовий вкладень за формою нагадує кільце. Охолодження його здійснюється за рахунок розплавлення і випаровування , що міститься в його порах. Найкращим для цієї мети є метал, для випаровування одиниці об'єму якого потрібно найбільше тепла. У 2021 р. у США почали розроблення космічного апарата з тепловим ядерним ракетним двигуном. (uk)
  • En raket är en farkost som drivs av en raketmotor. För att minska luftmotståndet är raketer som används i atmosfären spolformade med spetsig nos, men i rymden behövs inte denna begränsning. Raketer är oftast flygande, men kan avfyras från ubåtar i undervattensläge, och det finns även raketdrivna torpeder. Raketer som ska styras inom atmosfären har 3–4 styrfenor i bakänden, medan det i rymden är nödvändigt att vinkla raketmotorns dysa. Raketer skjuts ofta upp från särskilda ställningar, som kan kallas raketramp eller avfyrningsramp. I sin enklaste form sker avfyrningen från ett rör som riktas mot målet. (sv)
  • 火箭发动机是喷气发动机的一种,将推进剂箱或运载工具内的反应物料(推进剂)变成高速射流,由于牛顿第三定律而产生推力。火箭发动机可用于航天器推进,也可用于导弹等地面应用。大部分火箭发动机都是内燃机,也有非燃烧形式的发动机。 (zh)
  • 火箭或稱噴射推進器,是一種利用排出物質以製造反作用力(即發動機)推進的飛行器。速度很快,可以用來運載人造衛星、宇宙飛船等;也可以裝上彈頭和制導系統等製成導彈。因火箭機構最早用於發射箭矢上,因此在中文稱為火箭。另外古代将箭頭附上可燃物質並點火的箭矢也叫火箭,但不在本篇的討論範圍內。 (zh)
  • Раке́та (італ. rocchetta — «маленьке веретено», нім. rakete) — літальний апарат, що рухається в просторі за рахунок дії реактивного руху, що виникає внаслідок відкидання частини власної маси (робочого тіла) апарату без використання речовини з навколишнього середовища. Оскільки політ ракети не вимагає обов'язкової наявності навколишнього повітряного або газового середовища, то рух ракети можливий не тільки в атмосфері, але й у вакуумі.Словом ракета позначають широкий спектр летючих пристроїв від святкової петарди до космічної ракети-носія. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 262135 (xsd:integer)
dbo:wikiPageLength
  • 83695 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1068718899 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • الصاروخ هو جسم طائر يعمل على مبدأ الاندفاع عن طريق رد الفعل لانفجارات تتم في غرفة الاحتراق كما هو مبين في الأسفل وهو مبدأي ذاتي، غير مرتبط بوجود هواء يحيط بالصاروخ ؛ أي أن الصاروخ أو الدفع الصاروخي يعمل أيضا في الفضاء الخالي من الهواء مثلا (حين لا يحتاج احتراق الوقود للهواء). وهو يتميز عن القذيفة في أن مرحلة التسارع لدى الصاروخ أطول وكذلك الحال بالنسبة للمدى.ويختلف حجم الصاروخ من صواريخ الألعاب النارية مرورا بالصواريخ العسكرية إلى الصواريخ العملاقة كصاروخ زحل 5 الذي استعمل في استكشاف القمر خلال مشروع أبولو. (ar)
  • Un coet és un grup autònom propulsat per la força de reacció creada mitjançant l'ejecció de massa en una direcció determinada. Els coets són coneguts principalment per la seva aplicació en el camp de l'astronàutica, ja que constitueixen l'únic mitjà existent per posar objectes en òrbita fora de l'atmosfera terrestre. (ca)
  • Raketový motor je typ tepelného motoru, který pracuje na principu akce a reakce. Na rozdíl od většiny ostatních reaktivních motorů není závislý na atmosférickém kyslíku, a tak je schopen se pohybovat mimo atmosféru. Může být poháněn tuhými a kapalnými palivy. (cs)
  • Raketa je létající stroj, který se pohybuje pouze na principu akce a reakce. Je poháněna raketovým motorem. Rakety různých typů se využívají především v kosmickém výzkumu a vojenství, ale i pro zábavu (ohňostroj). (cs)
  • Ο πύραυλος (ή ρουκέτα) είναι βλήμα, που προωθείται εκτοξεύοντας αέρια που προέρχονται από καύση στερεών ή υγρών καυσίμων. Η λειτουργία του στηρίζεται στη θεωρία του Νεύτωνα περί δράσης και αντίδρασης, με βάση και την αρχή διατήρησης της ορμής. Η ταχύτητα τού πυραύλου καθορίζεται από το μέγεθός του και την ταχύτητα με την οποία εξέρχονται τα αέρια. Η καύση γίνεται με τη βοήθεια του οξυγόνου, που εναποθηκεύεται σε υγρή μορφή μέσα στον πύραυλο, και άλλων ουσιών που δρουν σαν . (el)
  • Raketo (vorto derivita de la itala vorto rocchetta, "eta fuzeo") estas misilo, kosmoŝipo, flugaparato, aŭ alia veturilo kiu gajnas malantaŭenpuŝon de raketomotoro. (eo)
  • Un motor cohete es un motor de reacción que genera empuje mediante la expulsión a la atmósfera de gases que provienen de la cámara de combustión. Los motores cohete incorporan tanto el combustible, que suele ser queroseno o hidrógeno líquido, como el comburente, (oxígeno en estado gaseoso o generalmente líquido). El motor cohete es el motor más potente conocido y su relación peso/potencia lo convierte en el motor ideal para ser usado en naves espaciales. (es)
  • Suziri bat errekuntzaz kanporatutako gasek bultzaturiko gailua da, batez ere piroteknian eta astronautikan erabiliak. Batzuetan misil ere deitzen zaie, baina izen hori bereziki arlo militarrean erabiltzen diren koheteetarako erabiltzen da. (eu)
  • Suziri motorra deritzo errekuntza ganberako gasak atmosferara kanporatzearen ondorioz bultzada sortzen duen erreakzio motorrari. Suziri motorrek erregaia eta erregarria erabiltzen dituzte. Erregaia kerosenoa edo izan ohi da, eta erregarria, berriz, oxigenoa, gas egoeran edo likido egoeran. Suziri motorra da motor guztietatik potentzia handienekoa, eta espazio ontzietan erabiltzeko motor ideala da, bere pisu-potentzia erlazioagatik. (eu)
  • Is feithicil í roicéad, diúracán nó eitleán a fhaigheann sá nó ropadh de réir Tríú Dlí Newton, nuair a phléascann gáis an-te amach ar chúl a innill. (ga)
  • In aeronautica, il motore a razzo (meno comune propulsore a razzo), o endoreattore, è un motore a reazione che sfrutta il principio di azione e reazione per produrre una spinta; si distingue dagli esoreattori (motori a reazione) per la caratteristica di immagazzinare il comburente in appositi serbatoi, o già miscelato con il combustibile.La maggior parte degli endoreattori sono motori a combustione interna. Nei paesi di lingua anglosassone, alcuni autori distinguono tra rocket engine (“motore a razzo” a combustibile liquido) e rocket motor (a combustibile solido). (it)
  • 로켓엔진(rocket engine)은 저장된 추진제(propellant)를 고속으로 분출하여 반작용을 얻는 엔진의 일종을 의미한다. 로켓 엔진에는 연료와 함께 산화제가 공급되므로 외부에서 산소가 공급되지 않는 경우에도 작동하며, 우주선이나 미사일의 추진 등 우주공간에서 주로 쓰인다. 거의 대부분의 로켓엔진은 내연기관이며, 그렇지 않은 경우도 있다. 일군(一群)으로서의 로켓 엔진은 모든 엔진을 통틀어 배기 속도가 가장 높으며, 추력대비 무게가 가장 가벼우며, 매우 높은 속도에서 가장 효율적으로 에너지를 사용한다. 이들 로켓 엔진은 높은 배기 속도와 로켓 추진제의 상대적으로 낮은 비에너지(specific energy)로 추진력을 얻기 위해 추진제를 급격히 소비한다. (ko)
  • ロケットエンジンとは推進剤を噴射する事によってその反動で推力を得るエンジンである。ニュートンの第3法則に基づく。 同義語としてロケットモータがある。こちらは固体燃料ロケットエンジンの場合に用いられるのが一般的である。 (ja)
  • A propulsão do foguete (português brasileiro) ou foguetão (português europeu) se dá quando as substâncias químicas (hipergólicas ou não) são misturadas na válvula de ignição entrando em processo de combustão (espontânea no caso das hipergólicas ou forçadas nos outros casos), impulsionando o foguete. Motores de foguete se tornam mais eficientes em altas velocidades, devido ao efeito Oberth. (pt)
  • Een raket is een voorwerp voortgedreven door een reactiemotor met de benodigde reactiemassa aan boord. (nl)
  • En raketmotor är en motor som bland annat används för att driva fram rymdfarkoster. Raketmotorer är en vidareutveckling på jetmotorn och baseras teoretiskt på Newtons tredje lag om att varje kraft har en likvärdig motkraft. Medan vanliga jetmotorer (inom till exempel flyg) utnyttjar den syrgas, O2, som finns i atmosfärens lägre skikt (troposfären) för att kunna förbränna sitt bränsle (fotogen), så måste raketmotorn utöver bränsle även medföra syre. Syret kan vara i flytande form (vätskeraketmotorer), eller bundet i något kemiskt ämne (fastbränsleraketer). (sv)
  • En raket är en farkost som drivs av en raketmotor. För att minska luftmotståndet är raketer som används i atmosfären spolformade med spetsig nos, men i rymden behövs inte denna begränsning. Raketer är oftast flygande, men kan avfyras från ubåtar i undervattensläge, och det finns även raketdrivna torpeder. Raketer som ska styras inom atmosfären har 3–4 styrfenor i bakänden, medan det i rymden är nödvändigt att vinkla raketmotorns dysa. Raketer skjuts ofta upp från särskilda ställningar, som kan kallas raketramp eller avfyrningsramp. I sin enklaste form sker avfyrningen från ett rör som riktas mot målet. (sv)
  • 火箭发动机是喷气发动机的一种,将推进剂箱或运载工具内的反应物料(推进剂)变成高速射流,由于牛顿第三定律而产生推力。火箭发动机可用于航天器推进,也可用于导弹等地面应用。大部分火箭发动机都是内燃机,也有非燃烧形式的发动机。 (zh)
  • 火箭或稱噴射推進器,是一種利用排出物質以製造反作用力(即發動機)推進的飛行器。速度很快,可以用來運載人造衛星、宇宙飛船等;也可以裝上彈頭和制導系統等製成導彈。因火箭機構最早用於發射箭矢上,因此在中文稱為火箭。另外古代将箭頭附上可燃物質並點火的箭矢也叫火箭,但不在本篇的討論範圍內。 (zh)
  • Раке́та (італ. rocchetta — «маленьке веретено», нім. rakete) — літальний апарат, що рухається в просторі за рахунок дії реактивного руху, що виникає внаслідок відкидання частини власної маси (робочого тіла) апарату без використання речовини з навколишнього середовища. Оскільки політ ракети не вимагає обов'язкової наявності навколишнього повітряного або газового середовища, то рух ракети можливий не тільки в атмосфері, але й у вакуумі.Словом ракета позначають широкий спектр летючих пристроїв від святкової петарди до космічної ракети-носія. (uk)
  • Raketentriebwerke oder auch Raketenmotoren sind Antriebe, die die Antriebskraft (Schub) durch Ausstoßen von Stützmasse entgegen der Antriebsrichtung erzeugen. Weil sie dabei keine Materie von außen ansaugen und beschleunigt wieder ausstoßen, funktionieren sie unabhängig von der Umgebung, also auch im Vakuum. Sie wurden ursprünglich für den Flug von Raketen entwickelt. Es existieren verschiedene Ausführungen von Raketentriebwerken und zahlreiche Bemühungen, die benötigten Betriebsmittel von Raketentriebwerken zu reduzieren (siehe Aerospike). (de)
  • Eine Rakete (italienisch rocchetta ‚Spindel‘, woraus durch Conrad Haas der Begriff Rackette entstand) ist ein Flugkörper mit Rückstoßantrieb (Raketenantrieb). Der Antrieb kann auch während des Betriebs unabhängig von externer Stoffzufuhr (beispielsweise Oxidator) arbeiten und daher die Rakete auch im luftleeren Raum beschleunigen. Im Gegensatz zu Geschossen haben Raketen (vergleichsweise) lange Beschleunigungsphasen. Die dadurch deutlich geringere Belastung ermöglicht eine entsprechend leichtere Struktur. Raketen gibt es in Größen von handlichen Feuerwerksraketen bis hin zu den riesigen Raketen in der Raumfahrt wie der Energija oder der Saturn V, die im Apollo-Programm, dem bemannten Flug zum Mond, eingesetzt wurde. (de)
  • Un cohete es un vehículo que obtiene su empuje por la reacción de la expulsión rápida de gases de combustión desde un motor cohete. A ciertos tipos de cohete se los denomina misil y en este cambio de nombre no interviene el tamaño o potencia, sino que generalmente se llama misil a todo cohete de uso militar con capacidad de ser dirigido o manejado activamente para alcanzar un blanco. Hay muchos tipos diferentes de cohetes, su tamaño puede variar desde los pequeños modelos de juguete que pueden comprarse en tiendas, hasta los enormes cohetes espaciales Saturno V usados por el programa Apolo. (es)
  • En astronautique, une fusée est un véhicule mû par un moteur-fusée de grande puissance qui lui permet de se déplacer dans l'espace proche, et notamment de placer en orbite une charge utile (satellite artificiel), voire d'échapper à l'attraction terrestre pour visiter différents corps célestes. Les fusées de l'astronautique sont généralement dotées de plusieurs étages mis à feu successivement. Les plus grosses fusées construites, comme Saturn V, permettent de placer jusqu'à 150 tonnes en orbite basse. (fr)
  • Roket merupakan wahana luar angkasa, peluru kendali, atau kendaraan terbang yang mendapatkan dorongan melalui reaksi roket terhadap keluarnya secara cepat bahan fluida dari keluaran mesin roket. Aksi dari keluaran dalam ruang bakar dan nozle pengembang, mampu membuat gas mengalir dengan kecepatan hipersonik sehingga menimbulkan dorongan reaktif yang besar untuk roket (sebanding dengan reaksi balasan sesuai dengan Hukum Pergerakan Newton ke 3). Seringkali definisi roket digunakan untuk merujuk kepada mesin roket. (in)
  • Le moteur-fusée est un type de moteurs à réaction, c'est-à-dire un engin qui projette un fluide (gaz ou liquide) vers l'arrière, ce qui transmet par réaction une poussée au véhicule solidaire du moteur, de force égale et de direction opposée, vers l'avant. Le moteur-fusée présente la particularité d'expulser une matière qui est entièrement stockée dans le corps du véhicule. Ce type de moteur est en particulier utilisé par les fusées car, étant autosuffisant, il peut fonctionner dans un milieu dépourvu d'atmosphère, mais également par les missiles car il permet d'atteindre des vitesses très importantes. (fr)
  • ロケット(英: rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル全体をロケットということも多い。日本では、地上から照射されたマイクロ波やレーザービームをリフレクターで反射し、空気の電離によるプラズマ発生時の爆発などを推進力とし、燃料を使わないローンチ・ヴィークルも「ロケット」と呼ばれる。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、イタリア語で「糸巻き」を意味する「rocchetto」に由来する。 イタリアで打ち上げられたロケット花火の形状が、機織り紡錘に似ていたところから、こう呼ばれるようになった。 (ja)
  • A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidizer, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles. (en)
  • 로켓(rocket, 문화어: 로케트)은 로켓엔진에서 추력을 얻는 미사일, 우주선, 비행기 또는 다른 운송수단(vehicle)이다. 배출 가스를 빠르게 분사시켜 그 반작용으로 추력을 얻는 비행체를 말한다. 종종 로켓은 '로켓 엔진'을 지칭하는 말로도 쓰이며 군사적으로는 탄두를 싣고 적의 주요 건물, 기지등을 타격하기 위해 발사하는 미사일 중 고체 추진제를 사용하고 비유도 방식의 미사일에 한정하여 사용하기도 한다. 로켓이 다른 제트 엔진에 비해 유리한 점은 배출 가스의 속도와 크기가 크기 때문에 고속에 유리하다는 것이다. 마하 10 이상이면 로켓이 운용할 수 있는 유리한 추진 방법이고 지구 궤도 속도(마하 25)에 이를 수 있는 방법은 현실적으로 로켓이 유일하다. 또한 로켓만이 가지는 장점으로는 산소가 없는 곳에서 작동이 가능하다는 것이다. 로켓은 대기권 밖에서 운용할 때 산화제를 함께 적재하여 추진제를 연소시킨다. 로켓은 가속뿐 아니라 궤도 변경, 제진입과 착륙을 위한 궤도이탈, 공기가 없는 곳에서 착륙시 감속을 위한 용도로도 쓰인다. (ko)
  • Silnik rakietowy – rodzaj silnika odrzutowego, czyli wykorzystującego zjawisko odrzutu substancji roboczej, który nie pobiera w trakcie pracy żadnej substancji z otoczenia, dzięki czemu może pracować w próżni kosmicznej. Silnik rakietowy stosowany jest najczęściej w rakietach i promach kosmicznych oraz pociskach rakietowych. Ogólnie możemy podzielić silniki rakietowe zależnie od źródła ich energii i od substancji roboczej. Poniżej omówione są silniki, w których energia jest wynikiem reakcji chemicznej. (pl)
  • Rakieta to pojazd latający lub pocisk, napędzany silnikiem rakietowym. Obiekt ten uzyskuje siłę ciągu dzięki materii wyrzucanej z dużą prędkością. Na ogół są to gazy powstałe przy spalaniu paliwa. Czasem są to sprężone gazy lub przegrzana para. Siła działająca na rakietę (ciąg silnika rakietowego) jest wynikiem trzeciej zasady dynamiki Newtona. Często pojęcie rakiety jest używane w znaczeniu silnika rakietowego lub pocisku rakietowego. Rakiety służą między innymi do przenoszenia ładunku, np. statku kosmicznego, głowic bojowych, sztucznych satelitów w warunkach przestrzeni kosmicznej, gdzie nie ma żadnej zewnętrznej substancji, której pojazd mógłby użyć jako elementu napędzającego. (pl)
  • Um foguete espacial é uma máquina que se desloca expelindo atrás de si um fluxo de gás a alta velocidade. Por conservação da quantidade de movimento (massa multiplicada por velocidade), o foguete desloca-se no sentido contrário com velocidade tal que, multiplicada pela massa do foguete, o valor da quantidade de movimento é igual ao dos gases expelidos. (pt)
  • Ракетный двигатель — реактивный двигатель, не использующий для своей работы из окружающей среды ни энергию, ни рабочее тело. Таким образом, РД – установка, имеющая источник энергий и запас рабочего тела и предназначенная для получения тяги путем преобразования любого вида энергий в кинетическую энергию рабочего тела. Ракетный двигатель — единственный практически освоенный способ вывода полезной нагрузки на орбиту вокруг Земли. (ru)
  • Раке́тний двигу́н / руші́й — різновид реактивного двигуна, у якому робоче тіло (газ, продукти , потік іонів) міститься в об'єкті (ракеті). Практичне застосування мають переважно ракетні двигуни, у яких тяга створюється внаслідок спалювання палива, компонентами якого є пальне та окисник. Ракетні двигуни приводять у дію ракети-носії космічних кораблів та ракетних снарядів. У 2021 р. у США почали розроблення космічного апарата з тепловим ядерним ракетним двигуном. (uk)
rdfs:label
  • Rocket engine (en)
  • محرك صاروخي (ar)
  • صاروخ (ar)
  • Motor de coet (ca)
  • Raketový motor (cs)
  • Coet (ca)
  • Raketa (cs)
  • Πύραυλος (el)
  • Raketentriebwerk (de)
  • Rakete (de)
  • Raketo (eo)
  • Motor cohete (es)
  • Cohete (es)
  • Suziri (eu)
  • Suziri motor (eu)
  • Moteur-fusée (fr)
  • Fusée (astronautique) (fr)
  • Roicéad (ga)
  • Mesin roket (in)
  • Roket (in)
  • ロケットエンジン (ja)
  • Motore a razzo (it)
  • Razzo (it)
  • ロケット (ja)
  • 로켓 (ko)
  • Raket (nl)
  • 로켓 엔진 (ko)
  • Propulsão de foguete (pt)
  • Silnik rakietowy (pl)
  • Rakieta (pl)
  • Foguete espacial (pt)
  • Ракета (ru)
  • Ракетный двигатель (ru)
  • Ракетний двигун (uk)
  • Raketmotor (sv)
  • Raket (sv)
  • Ракета (uk)
  • 火箭 (zh)
  • 火箭发动机 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:homepage
foaf:isPrimaryTopicOf
is dbo:industry of
is dbo:product of
is dbo:type of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:eng1Type of
is dbp:eng2Type of
is dbp:engine of
is dbp:knownFor of
is dbp:products of
is dbp:steering of
is dbp:type of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License