In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry.

Property Value
dbo:abstract
  • يعبر مصطلح الهندسة اللاإقليدية في علم الرياضيات عن الهندسة الاهليليجية وهندسة القطوع الزائدة والتي هي مقابل الهندسة الإقليدية.الفرق الأساسي بين الهندسة الإقليدية والهندسة اللاإقليدية هو في طبيعة . حيث تنص مسلمة إقليدس الخامسة أن في المستوي الثنائي الأبعاد من أجل أي مستقيم l ونقطة A لا تقع على المستقيم l يوجد مستقيم وحيد يمر من A ولا يتقاطع مع l. في يوجد عدد لانهائي من المستقيمات التي تمر بـ A بدون أن تقطع l بينما في الهندسة الاهليليجية فإن المستقيمين المتوازيين يتقاربان ومن ثم يتقاطعان. (ar)
  • La geometria no euclidiana es diferencia de la geometria euclidiana perquè, en aquesta mena de geometria, el cinquè postulat d'Euclides no és vàlid. No fou desenvolupada amb la intenció de precisar la nostra experiència espacial, sinó com una en conflicte amb el cinquè postulat d'Euclides. Segons el model de la geometria no euclidiana, es demostra que el cinquè postulat d'Euclides no es pot deduir dels altres axiomes i que n'és independent. La geometria no euclidiana s'obté a mesura que s'omet o es modifica el cinquè postulat d'Euclides. Les possibilitats fonamentals de modificació són: * Entre una recta i un punt situat fora de la recta no hi ha cap paral·lela. Per tant, dues rectes diferents en un mateix nivell es toquen sempre. Aquesta hipòtesi no és compatible amb la resta d'axiomes de la geometria euclidiana. S'arriba, per tant, a la conclusió que entre dos punts només hi pot haver una recta d'unió. Aquest fet condueix a la geometria el·líptica. Un model il·lustratiu de la geometria el·líptica bidimensional és la geometria d'una superfície esfèrica, en què la suma d'angles d'un triangle és superior a 180°. * Entre una recta i un punt situat fora de la recta hi ha, com a mínim, dues paral·leles. Amb la qual cosa la resta d'axiomes euclidians es mantenen. D'això, se n'obté la geometria hiperbòlica. Un exemple bidimensional d'aquesta geometria és una superfície amb forma de selló, en la qual la suma dels angles d'un triangle situat damunt d'aquesta superfície és menor a 180°. Actualment, la geometria no euclidiana té un paper molt important en la física teòrica i en la cosmologia. Segons la teoria de la relativitat, difereix de la geometria del cosmos perquè la gravitació "plega" l'espai. Un dels misteris més importants de la física actual és saber si la geometria de l'univers és, en línies generals, esfèrica (el·líptica), plana (és a dir, euclidiana) o hiperbòlica. (ca)
  • Neeukleidovská geometrie je obecné označení pro takové geometrie (tj. systémy splňující první čtyři Eukleidovy postuláty), které nesplňují pátý Eukleidův postulát. Jejími nejdůležitějšími případy jsou hyperbolická geometrie, (a její zvláštní případ sférická geometrie), Riemannova geometrie a . Geometrie splňující i pátý postulát se nazývá eukleidovská. (cs)
  • Στα μαθηματικά, μια μη-Ευκλείδεια γεωμετρία συνίσταται από δύο γεωμετρίες βασισμένες σε αξιώματα στενά συνδεδεμένα με αυτά που προσδιορίζουν την Ευκλείδεια γεωμετρία. Καθώς η Ευκλείδεια γεωμετρία βρίσκεται στην τομή της με την (ομοπαραλληλική γεωμετρία), η μη-Ευκλείδεια γεωμετρία προκύπτει όταν είτε η απαίτηση του μέτρου χαλαρώνει (ότι δηλαδή η συνάρτηση μέτρο παίρνει τιμές όχι μόνο στο [0,+οο) αλλά και σε άλλα , είτε το αξίωμα των παραλλήλων αντικαθίσταται με ένα εναλλακτικό. Στην τελευταία περίπτωση έχουμε την υπερβολική γεωμετρία και την ελλειπτική γεωμετρία, τις κλασικές μη-ευκλείδειες γεωμετρίες. Όταν η απαίτηση του μέτρου χαλαρώνει, υπάρχουν ομοπαραλληλικά επίπεδα που σχετίζονται με επίπεδες άλγεβρες το οποίο οδηγεί στις κινηματικές γεωμετρίες ([1]) οι οποίες επίσης έχουν αποκαλεστεί μη-Ευκλείδειες. Η ουσιαστική διαφορά με τις μετρικές γεωμετρίες είναι στην φύση των παράλληλων ευθειών. Το 5ο αξίωμα του Ευκλείδη, το αξίωμα των παραλλήλων, είναι ισοδύναμο με το , που δηλώνει ότι, σε ένα επίπεδο 2 διαστάσεων, για κάθε ευθεία ε και σημείο A, εκτός της ε, υπάρχει ακριβώς μια ευθεία διερχόμενη από το A που δεν τέμνει την ε. Αντίθετα, στην υπερβολική γεωμετρία υπάρχουν άπειρες το πλήθος ευθείες διερχόμενες από το A που δεν τέμνουν την ε, ενώ στην ελλειπτική γεωμετρία, κάθε ευθεία διερχόμενη του A τέμνει την ε. Άλλος τρόπος να περιγράψουμε την διαφορά μεταξύ αυτών των γεωμετριών είναι να θεωρήσουμε 2 ευθείες επ' αόριστον επεκταμένες σε ένα δισδιάστατο επίπεδο που είναι και οι 2 σε μία 3η ευθεία: * Στην Ευκλείδεια Γεωμετρία οι ευθείες διατηρούν σταθερή απόσταση η μία από την άλλη ακόμα και αν επεκταθούν στο άπειρο, και είναι γνωστές ως παράλληλες. * Στην υπερβολική γεωμετρία καμπυλώνουν απομακρυνόμενες η μία από την άλλη, αυξάνοντας την μεταξύ τους απόσταση καθώς η μία απομακρύνεται από τα σημεία τομής με την κοινή κάθετη; τέτοιες ευθείες συχνά αποκαλούνται υπερπαράλληλες. * Στην ελλειπτική γεωμετρία καμπυλώνουν η μία προς την άλλη και τέμνονται. (el)
  • In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry. The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line l and a point A, which is not on l, there is exactly one line through A that does not intersect l. In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting l, while in elliptic geometry, any line through A intersects l. Another way to describe the differences between these geometries is to consider two straight lines indefinitely extended in a two-dimensional plane that are both perpendicular to a third line: * In Euclidean geometry, the lines remain at a constant distance from each other (meaning that a line drawn perpendicular to one line at any point will intersect the other line and the length of the line segment joining the points of intersection remains constant) and are known as parallels. * In hyperbolic geometry, they "curve away" from each other, increasing in distance as one moves further from the points of intersection with the common perpendicular; these lines are often called ultraparallels. * In elliptic geometry, the lines "curve toward" each other and intersect. (en)
  • Die nichteuklidischen Geometrien sind Spezialisierungen der absoluten Geometrie. Sie unterscheiden sich von der euklidischen Geometrie, die ebenfalls als eine Spezialisierung der absoluten Geometrie formuliert werden kann, dadurch, dass in ihnen das Parallelenaxiom nicht gilt. (de)
  • Se denomina geometría no euclidiana o no euclídea, a cualquier sistema formal de geometría cuyos postulados y proposiciones difieren en algún asunto de los establecidos por Euclides en su tratado Elementos. No existe un solo sistema de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles, pueden distinguirse tres formulaciones​ de geometrías: * La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero (es decir se supone en un espacio plano por lo que la suma de los tres ángulos interiores de un triángulo da siempre 180°.). * La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es inferior a 180°). * La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva (en esta geometría, por ejemplo, la suma de los tres ángulos interiores de un triángulo es mayor a 180°). Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se admite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espacio-tiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo. (es)
  • Geoiméadrachtaí a saothraíodh ón 18ú céad anuas, bunaithe ar 5ú aicsím Eoiclídéis a thréigean ar bhealaí éagsúla. Ba í an aicsím sin nach féidir ach líne dhíreach amháin a tharraingt trí phointe ar leith atá comhthreomhar le líne dhíreach ar leith. Mar shampla, má ghlactar mar aicsím nua ina hionad sin gur féidir níos mó ná líne dhíreach amháin a tharraingt trí phointe ar leith atá comhthreomhar le líne dhíreach ar leith, forbraítear geoiméadrachtaí hipearbóileacha, mar atá déanta ag Gauß is Lobachevsky. Ba í seo an chéad gheoiméadracht fhisiciúil shochreidte mar mhalairt ar gheoiméadracht Eoiclídéis. Mar shampla eile, má ghlactar mar aiscím eile nach féidir aon líne dhíreach a tharraingt trí phointe ar leith atá comhthreomhar le líne dhíreach ar leith, forbraítear geoiméadracht éilipseach, agus rinne Riemann obair bhunúsach ar an gcoincheap teibí seo. Tá geoiméadrachtaí neamh-Eoiclídéacha teibí eile á saothrú freisin. (ga)
  • En mathématiques, on appelle géométrie non euclidienne une théorie géométrique ayant recours à tous les axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues de la volonté de démontrer le cinquième postulat (le postulat d'Euclide) qui semblait peu satisfaisant car trop complexe, et peut-être redondant. Dans les Éléments d'Euclide, le postulat ressemble à la conclusion d'un théorème, mais qui ne comporterait pas de démonstration : Si une droite, tombant sur deux droites, fait les angles intérieurs du même côté plus petits que deux droits, ces droites, prolongées à l'infini, se rencontreront du côté où les angles sont plus petits que deux droits. qu'on peut comprendre comme : Par un point extérieur à une droite, il passe toujours une parallèle à cette droite, et une seule. Durant plusieurs siècles, la géométrie euclidienne a été utilisée sans que l'on mette en doute sa validité. Elle a même été longtemps considérée comme l'archétype du raisonnement logico-déductif. Elle présentait en effet l'avantage de définir les propriétés intuitives des objets géométriques dans une construction mathématique rigoureuse. (fr)
  • Dalam matematika, geometri non-Euklides (bahasa Inggris: non-Euclidean geometry) adalah himpunan kecil geometri berdasarkan aksioma yang berkaitan erat dengan geometri Euklides. Jika geometri Euklides terbentang antara geometri metrik dan , geometri non-Euklides muncul saat ruang metrik tidak ada, atau diabaikan. Perbedaan mendasar dari geometri metrik adalah keadaan garis . Cara lain untuk menggambarkan perbedaan antara geometri tersebut adalah dengan menggambarkan dua garis lurus dengan panjang tak hingga yang keduanya tegak lurus dengan sebuah garis ketiga. (in)
  • Una geometria non euclidea è una geometria costruita negando o non accettando alcuni postulati euclidei.Viene detta anche metageometria. (it)
  • 非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。平易な言葉で表現するならば、「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。 (ja)
  • 비유클리드 기하학(non-Euclidean geometry)은 유클리드 기하학의 제5공리 "직선 밖의 한 점을 지나면서 그 직선에 평행한 직선은 단 하나 존재한다"가 성립하지 않는 공간을 다루는 기하학으로, 쌍곡기하학, 타원기하학, 택시기하학 등이 있다. 19세기에 제5공리를 부정해도 다른 공리와는 아무런 모순이 없음이 밝혀지면서 등장하였다. 연구한 수학자로는 니콜라이 로바쳅스키 · 보여이 야노시 · 베른하르트 리만이 유명하다. 비유클리드 기하학은 타원기하학(elliptic geometry)과 쌍곡기하학(hyperbolic geometry)의 총칭이기도 하다. 대표적인 학자로는 카를 프리드리히 가우스, 베른하르트 리만 등이 있다. 리만은 “구 위에서는 한 직선과 그 직선 위에 있지 않은 점이 주어졌을 때, 그 직선과 평행하고 그 점을 지나는 직선은 없다.”고 말했으며, 가우스는 반대로 “ 위에서는 한 직선과 그 직선 위에 있지 않은 점이 주어졌을 때, 그 직선과 평행하고 그 점을 지나는 직선은 둘 이상이다.”고 말했다. 이는 각각 타원 기하학과 쌍곡 기하학의 기초가 되었다. 삼각형의 내각의 합이 180도인 유클리드 기하학과는 달리 비유클리드 기하학에서는 삼각형의 내각의 합이 180도가 아니라 이보다 크거나(타원 기하학) 작다(쌍곡 기하학). 비유클리드 기하학은 역사적으로는 공리론적으로 구성되지만 현대적인 견해로는 비유클리드 기하학을 리만 기하학의 특수한 예 또는 고전적인 모델로 간주한다. 그리고 현재까지 13개 이상의 기하학이 탄생되고 체계화 되었다. (ko)
  • Niet-euclidische meetkunde is meetkunde waarbij het vijfde postulaat van Euclides (het parallellenpostulaat) niet wordt aangenomen. Euclides ging bij zijn meetkunde uit van een aantal postulaten (axioma's). De meeste daarvan zijn eenvoudig, maar het vijfde vormt een uitzondering. Het postulaat heeft diverse vormen, maar de bekendste is waarschijnlijk "Gegeven een rechte l en een punt P dat niet op l ligt, dan is er in het vlak door l en P maar één rechte door P die l niet snijdt." (Euclides' oorspronkelijke vorm was gecompliceerder.) Er zijn twee typen niet-euclidische meetkunde: * In hyperbolische meetkunde gaan er door P oneindig veel lijnen die l niet snijden * In elliptische meetkunde gaat er door P geen lijn die l niet snijdt: alle lijnen snijden elkaar. Overigens is het voor elliptische meetkunde nodig ook andere postulaten van Euclides aan te passen. Lange tijd heeft men geprobeerd het parallellenpostulaat te bewijzen uit de andere axioma's, maar achteraf bleken alle bewijzen fout, doordat er ergens toch een 'evident' feit was gebruikt dat echter niet uit de overblijvende axioma's volgt, en dus equivalent was aan het parallellenpostulaat. In de 19e eeuw werd de stap genomen het parallellenpostulaat te laten vallen. Drie wiskundigen: de Rus Nikolaj Ivanovitsj Lobatsjevski (publicatie in 1829), de Hongaar János Bolyai (publicatie in 1832) en de Duitser Carl Friedrich Gauss (ongepubliceerd, maar voor 1832) ontdekten ieder voor zich de principes van de hyperbolische meetkunde. In 1733 had overigens Giovanni Saccheri al een flink aantal stellingen afgeleid, in een poging het parallellenpostulaat door middel van reductio ad absurdum te bewijzen. De elliptische meetkunde werd geïntroduceerd door Bernhard Riemann in 1854, als onderdeel van een veel grotere klasse van meetkunden (zie de Riemann-meetkunde). (nl)
  • Geometria nieeuklidesowa – geometria, która nie spełnia co najmniej jednego z aksjomatów geometrii euklidesowej. Może ona spełniać tylko część z nich, przy czym mogą również obowiązywać w niej inne, sprzeczne z aksjomatami i twierdzeniami geometrii Euklidesa. (pl)
  • Na matemática, uma geometria não euclidiana é uma geometria baseada num sistema axiomático distinto da geometria euclidiana. Modificando o axioma das paralelas, que postula que por um ponto exterior a uma reta passa exatamente uma reta paralela à inicial, obtêm-se as geometrias elíptica e hiperbólica. Na geometria elíptica não há nenhuma reta paralela à inicial, enquanto que na geometria hiperbólica existe uma infinidade de rectas paralelas à inicial que passam no mesmo ponto. Na geometria elíptica a soma dos ângulos internos de um triangulo é maior que dois ângulos retos, enquanto na geometria hiperbólica esta soma é menor que dois ângulos retos. Na elíptica, temos que a circunferência de um círculo é menor do que PI vezes o seu diâmetro, enquanto na hiperbólica esta circunferência é maior que PI vezes o diâmetro. O crédito pela descoberta das geometrias não euclidianas geralmente é atrelado às figuras dos matemáticos Carl Friedrich Gauss, e Bernhard Riemann. (pt)
  • Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к традиционным неевклидовым геометрическим системам: геометрии Лобачевского и сферической геометрии (или схожей с ней геометрии Римана). Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — совпадающим по локальным свойствам сферической или геометрии Римана, отрицательная — геометрии Лобачевского. (ru)
  • En icke-euklidisk geometri är en geometrisk teori där Euklides femte axiom, parallellaxiomet, inte gäller. Både hyperbolisk och elliptisk geometri är icke-euklidiska. Den väsentliga skillnaden mellan euklidisk och icke-euklidisk geometri är de parallella linjernas natur. Inom euklidisk geometri och med start i en punkt A och en linje l, går det att dra endast en linje genom A som är parallell med l. Inom hyperbolisk geometri finns det oändligt många linjer genom A parallella med l och inom elliptisk geometri existerar inte parallella linjer. Ett annat sätt att beskriva skillnaderna mellan geometrierna: betrakta två linjer i ett plan som båda är vinkelräta mot en tredje linje. Inom euklidisk och hyperbolisk geometri är de två linjerna parallella. Inom euklidisk geometri förblir avståndet mellan de två linjerna konstant, medan inom hyperbolisk geometri ökar avståndet mellan linjerna med ökande avstånd från skärningspunkterna med den gemensamma vinkelräta linjen. Inom elliptisk geometri minskar avståndet mellan linjerna tills linjerna skär varandra; således existerar inga parallella linjer inom elliptisk geometri. Beteende hos linjer med gemensam ortogonal linje i vardera av de tre sorternas geometri (sv)
  • 非欧几里得几何,简称非欧几何,是多个几何形式系统的统称,与欧几里得几何的差别在于第五公设。 (zh)
  • Неевклідова геометрія — у буквальному розумінні — будь-яка геометрична система, відмінна від геометрії Евкліда; проте традиційно термін «Неевклідова геометрія» застосовується у вужчому сенсі й стосується лише двох геометричних систем: гіперболічної геометрії й сферичної геометрії. Як і евклідова ці геометрії належать до метричних геометрій тривимірного простору постійної секційної кривини. Нульова кривина відповідає евклідовій геометрії, додатна — сферичній, від'ємна — гіперболічній геометрії. Суттєва різниця між метричними геометріями описується існуванням паралельних прямих. П'ятий постулат Евкліда або аксіома про паралельні прямі стверджує, що у двовимірній площині для будь-якої заданої прямої ℓ та точки A, яка не належить ℓ, існує рівно одна пряма, яка проходить через A і не перетинає ℓ. У гіперболічній геометрії, навпаки, через A проходить нескінченно багато прямих, які не перетинають ℓ. Тоді як в еліптичній геометрії будь-яка пряма, що проходить через A, перетинає ℓ (тобто, паралельних прямих у цій геометрії взагалі не існує). Інший спосіб описати різницю між цими геометріями полягає в тому, щоб розглянути дві прямі, які перпендикулярні до третьої прямої: * В евклідовій геометрії дві прямі залишаються на постійній відстані одна від одної (перпендикуляр, проведений до першої прямої в будь-якій її точці, перетне другу пряму, і довжина відрізка, який з'єднує точки перетину, є постійною). Такі прямі відомі як паралелі. * У гіперболічній геометрії дві прямі, перпендикулярні до третьої, «розбігаються» одна від одної, віддаляючись, якщо рухатись від точок перетину із загальним перпендикуляром[джерело?]. * В еліптичній (сферичній) геометрії такі прямі поступово «наближаються» одна до одної і врешті-решт — перетинаються. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 58610 (xsd:integer)
dbo:wikiPageLength
  • 43515 (xsd:integer)
dbo:wikiPageRevisionID
  • 983889968 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • 4669 (xsd:integer)
dbp:title
  • Non-euclidean geometry (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • يعبر مصطلح الهندسة اللاإقليدية في علم الرياضيات عن الهندسة الاهليليجية وهندسة القطوع الزائدة والتي هي مقابل الهندسة الإقليدية.الفرق الأساسي بين الهندسة الإقليدية والهندسة اللاإقليدية هو في طبيعة . حيث تنص مسلمة إقليدس الخامسة أن في المستوي الثنائي الأبعاد من أجل أي مستقيم l ونقطة A لا تقع على المستقيم l يوجد مستقيم وحيد يمر من A ولا يتقاطع مع l. في يوجد عدد لانهائي من المستقيمات التي تمر بـ A بدون أن تقطع l بينما في الهندسة الاهليليجية فإن المستقيمين المتوازيين يتقاربان ومن ثم يتقاطعان. (ar)
  • Neeukleidovská geometrie je obecné označení pro takové geometrie (tj. systémy splňující první čtyři Eukleidovy postuláty), které nesplňují pátý Eukleidův postulát. Jejími nejdůležitějšími případy jsou hyperbolická geometrie, (a její zvláštní případ sférická geometrie), Riemannova geometrie a . Geometrie splňující i pátý postulát se nazývá eukleidovská. (cs)
  • Die nichteuklidischen Geometrien sind Spezialisierungen der absoluten Geometrie. Sie unterscheiden sich von der euklidischen Geometrie, die ebenfalls als eine Spezialisierung der absoluten Geometrie formuliert werden kann, dadurch, dass in ihnen das Parallelenaxiom nicht gilt. (de)
  • Dalam matematika, geometri non-Euklides (bahasa Inggris: non-Euclidean geometry) adalah himpunan kecil geometri berdasarkan aksioma yang berkaitan erat dengan geometri Euklides. Jika geometri Euklides terbentang antara geometri metrik dan , geometri non-Euklides muncul saat ruang metrik tidak ada, atau diabaikan. Perbedaan mendasar dari geometri metrik adalah keadaan garis . Cara lain untuk menggambarkan perbedaan antara geometri tersebut adalah dengan menggambarkan dua garis lurus dengan panjang tak hingga yang keduanya tegak lurus dengan sebuah garis ketiga. (in)
  • Una geometria non euclidea è una geometria costruita negando o non accettando alcuni postulati euclidei.Viene detta anche metageometria. (it)
  • 非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。平易な言葉で表現するならば、「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。 (ja)
  • Geometria nieeuklidesowa – geometria, która nie spełnia co najmniej jednego z aksjomatów geometrii euklidesowej. Może ona spełniać tylko część z nich, przy czym mogą również obowiązywać w niej inne, sprzeczne z aksjomatami i twierdzeniami geometrii Euklidesa. (pl)
  • 非欧几里得几何,简称非欧几何,是多个几何形式系统的统称,与欧几里得几何的差别在于第五公设。 (zh)
  • La geometria no euclidiana es diferencia de la geometria euclidiana perquè, en aquesta mena de geometria, el cinquè postulat d'Euclides no és vàlid. No fou desenvolupada amb la intenció de precisar la nostra experiència espacial, sinó com una en conflicte amb el cinquè postulat d'Euclides. Segons el model de la geometria no euclidiana, es demostra que el cinquè postulat d'Euclides no es pot deduir dels altres axiomes i que n'és independent. La geometria no euclidiana s'obté a mesura que s'omet o es modifica el cinquè postulat d'Euclides. Les possibilitats fonamentals de modificació són: (ca)
  • Στα μαθηματικά, μια μη-Ευκλείδεια γεωμετρία συνίσταται από δύο γεωμετρίες βασισμένες σε αξιώματα στενά συνδεδεμένα με αυτά που προσδιορίζουν την Ευκλείδεια γεωμετρία. Καθώς η Ευκλείδεια γεωμετρία βρίσκεται στην τομή της με την (ομοπαραλληλική γεωμετρία), η μη-Ευκλείδεια γεωμετρία προκύπτει όταν είτε η απαίτηση του μέτρου χαλαρώνει (ότι δηλαδή η συνάρτηση μέτρο παίρνει τιμές όχι μόνο στο [0,+οο) αλλά και σε άλλα , είτε το αξίωμα των παραλλήλων αντικαθίσταται με ένα εναλλακτικό. Στην τελευταία περίπτωση έχουμε την υπερβολική γεωμετρία και την ελλειπτική γεωμετρία, τις κλασικές μη-ευκλείδειες γεωμετρίες. Όταν η απαίτηση του μέτρου χαλαρώνει, υπάρχουν ομοπαραλληλικά επίπεδα που σχετίζονται με επίπεδες άλγεβρες το οποίο οδηγεί στις κινηματικές γεωμετρίες ([1]) οι οποίες επίσης έχουν αποκαλεστ (el)
  • In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry. (en)
  • Se denomina geometría no euclidiana o no euclídea, a cualquier sistema formal de geometría cuyos postulados y proposiciones difieren en algún asunto de los establecidos por Euclides en su tratado Elementos. No existe un solo sistema de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles, pueden distinguirse tres formulaciones​ de geometrías: (es)
  • Geoiméadrachtaí a saothraíodh ón 18ú céad anuas, bunaithe ar 5ú aicsím Eoiclídéis a thréigean ar bhealaí éagsúla. Ba í an aicsím sin nach féidir ach líne dhíreach amháin a tharraingt trí phointe ar leith atá comhthreomhar le líne dhíreach ar leith. Mar shampla, má ghlactar mar aicsím nua ina hionad sin gur féidir níos mó ná líne dhíreach amháin a tharraingt trí phointe ar leith atá comhthreomhar le líne dhíreach ar leith, forbraítear geoiméadrachtaí hipearbóileacha, mar atá déanta ag Gauß is Lobachevsky. Ba í seo an chéad gheoiméadracht fhisiciúil shochreidte mar mhalairt ar gheoiméadracht Eoiclídéis. Mar shampla eile, má ghlactar mar aiscím eile nach féidir aon líne dhíreach a tharraingt trí phointe ar leith atá comhthreomhar le líne dhíreach ar leith, forbraítear geoiméadracht éilipseach (ga)
  • En mathématiques, on appelle géométrie non euclidienne une théorie géométrique ayant recours à tous les axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues de la volonté de démontrer le cinquième postulat (le postulat d'Euclide) qui semblait peu satisfaisant car trop complexe, et peut-être redondant. Dans les Éléments d'Euclide, le postulat ressemble à la conclusion d'un théorème, mais qui ne comporterait pas de démonstration : qu'on peut comprendre comme : (fr)
  • 비유클리드 기하학(non-Euclidean geometry)은 유클리드 기하학의 제5공리 "직선 밖의 한 점을 지나면서 그 직선에 평행한 직선은 단 하나 존재한다"가 성립하지 않는 공간을 다루는 기하학으로, 쌍곡기하학, 타원기하학, 택시기하학 등이 있다. 19세기에 제5공리를 부정해도 다른 공리와는 아무런 모순이 없음이 밝혀지면서 등장하였다. 연구한 수학자로는 니콜라이 로바쳅스키 · 보여이 야노시 · 베른하르트 리만이 유명하다. 비유클리드 기하학은 역사적으로는 공리론적으로 구성되지만 현대적인 견해로는 비유클리드 기하학을 리만 기하학의 특수한 예 또는 고전적인 모델로 간주한다. 그리고 현재까지 13개 이상의 기하학이 탄생되고 체계화 되었다. (ko)
  • Niet-euclidische meetkunde is meetkunde waarbij het vijfde postulaat van Euclides (het parallellenpostulaat) niet wordt aangenomen. Euclides ging bij zijn meetkunde uit van een aantal postulaten (axioma's). De meeste daarvan zijn eenvoudig, maar het vijfde vormt een uitzondering. Het postulaat heeft diverse vormen, maar de bekendste is waarschijnlijk "Gegeven een rechte l en een punt P dat niet op l ligt, dan is er in het vlak door l en P maar één rechte door P die l niet snijdt." (Euclides' oorspronkelijke vorm was gecompliceerder.) Er zijn twee typen niet-euclidische meetkunde: (nl)
  • Na matemática, uma geometria não euclidiana é uma geometria baseada num sistema axiomático distinto da geometria euclidiana. Modificando o axioma das paralelas, que postula que por um ponto exterior a uma reta passa exatamente uma reta paralela à inicial, obtêm-se as geometrias elíptica e hiperbólica. Na geometria elíptica não há nenhuma reta paralela à inicial, enquanto que na geometria hiperbólica existe uma infinidade de rectas paralelas à inicial que passam no mesmo ponto. Na geometria elíptica a soma dos ângulos internos de um triangulo é maior que dois ângulos retos, enquanto na geometria hiperbólica esta soma é menor que dois ângulos retos. Na elíptica, temos que a circunferência de um círculo é menor do que PI vezes o seu diâmetro, enquanto na hiperbólica esta circunferência é maio (pt)
  • Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к традиционным неевклидовым геометрическим системам: геометрии Лобачевского и сферической геометрии (или схожей с ней геометрии Римана). (ru)
  • En icke-euklidisk geometri är en geometrisk teori där Euklides femte axiom, parallellaxiomet, inte gäller. Både hyperbolisk och elliptisk geometri är icke-euklidiska. Den väsentliga skillnaden mellan euklidisk och icke-euklidisk geometri är de parallella linjernas natur. Inom euklidisk geometri och med start i en punkt A och en linje l, går det att dra endast en linje genom A som är parallell med l. Inom hyperbolisk geometri finns det oändligt många linjer genom A parallella med l och inom elliptisk geometri existerar inte parallella linjer. (sv)
  • Неевклідова геометрія — у буквальному розумінні — будь-яка геометрична система, відмінна від геометрії Евкліда; проте традиційно термін «Неевклідова геометрія» застосовується у вужчому сенсі й стосується лише двох геометричних систем: гіперболічної геометрії й сферичної геометрії. Як і евклідова ці геометрії належать до метричних геометрій тривимірного простору постійної секційної кривини. Нульова кривина відповідає евклідовій геометрії, додатна — сферичній, від'ємна — гіперболічній геометрії. (uk)
rdfs:label
  • Non-Euclidean geometry (en)
  • هندسة لاإقليدية (ar)
  • Geometria no euclidiana (ca)
  • Neeukleidovská geometrie (cs)
  • Nichteuklidische Geometrie (de)
  • Μη ευκλείδειες γεωμετρίες (el)
  • Geometría no euclidiana (es)
  • Géométrie non euclidienne (fr)
  • Geoiméadrachtaí neamh-Eoiclídéacha (ga)
  • Geometri non-Euklides (in)
  • 非ユークリッド幾何学 (ja)
  • Geometria non euclidea (it)
  • 비유클리드 기하학 (ko)
  • Niet-euclidische meetkunde (nl)
  • Geometria nieeuklidesowa (pl)
  • Geometria não euclidiana (pt)
  • Неевклидова геометрия (ru)
  • Icke-euklidisk geometri (sv)
  • Неевклідова геометрія (uk)
  • 非欧几里得几何 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of