Text mining, also referred to as text data mining, roughly equivalent to , refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/en

Property Value
dbo:abstract
  • Text mining, also referred to as text data mining, roughly equivalent to , refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via application of natural language processing (NLP) and analytical methods. A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted. (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) التنقيب في النصوص، وأحيانا يشار إليها بالتناوب باسم التنقيب في البيانات النصية، أي ما يعني تقريبا تحليلات النصوص، يشير إلى عملية استخلاص معلومات عالية الجودة من النص. واستخلاص المعلومات عالية الجودة يكون من خلال التقسيم للأنماط والاتجاهات من خلال وسائل مثل التعلم الإحصائي للانماط. وعادة ما يتطلب التنقيب في النصوص ال عملية هيكلة للنص المدخل (عادة تحليل، جنبا إلى جنب مع إضافة بعض المميزات اللغوية المشتقة وإزالة أخرى، ومن ثم الإدراج في قاعدة بيانات)، واستخلاص الأنماط في البيانات المهيكلة، وأخيرا تقييم وتفسير للناتج. 'ذات جودة عالية' في مجال التنقيب في النصوص عادة ما يشير مزيج من الصلة، والحداثة، والاهتمام. المهام النموذجية للتنقيب في النصوص تشمل تصنيف النصوص، تجميع النص، واستخراج المفاهيم، وإنتاج التصنيفات الحبيبية، وتحليل المشاعر، وتلخيص الوثائق، ونمذجة العلاقات بين الكيانات (أي تعلم العلاقات بين الكيانات المسماة). (ar)
  • Text Mining, seltener auch Textmining, Text Data Mining oder Textual Data Mining, ist ein Bündel von Algorithmus-basierten Analyseverfahren zur Entdeckung von Bedeutungsstrukturen aus un- oder schwachstrukturierten Textdaten. Mit statistischen und linguistischen Mitteln erschließt Text-Mining-Software aus Texten Strukturen, die die Benutzer in die Lage versetzen sollen, Kerninformationen der verarbeiteten Texte schnell zu erkennen. Im Optimalfall liefern Text-Mining-Systeme Informationen, von denen die Benutzer zuvor nicht wissen, ob und dass sie in den verarbeiteten Texten enthalten sind. Bei zielgerichteter Anwendung sind Werkzeuge des Text Mining außerdem dazu in der Lage, Hypothesen zu generieren, diese zu überprüfen und schrittweise zu verfeinern. (de)
  • La minería de textos se refiere al proceso de derivar información nueva de textos. (es)
  • La fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains. Dans la pratique, cela revient à mettre en algorithme un modèle simplifié des théories linguistiques dans des systèmes informatiques d'apprentissage et de statistiques. Les disciplines impliquées sont donc la linguistique calculatoire, l'ingénierie des langues, l'apprentissage artificiel, les statistiques et l'informatique. (fr)
  • テキストマイニング(text mining)は、文字列を対象としたデータマイニングのことである。通常の文章からなるデータを単語や文節で区切り、それらの出現の頻度や共出現の相関、出現傾向、時系列などを解析することで有用な情報を取り出す、テキストデータの分析方法である。 テキストデータの多くは形式が定まっておらず、また日本語は英語などと比べて単語の境界判別の必要性(→わかち書き)や文法ゆらぎが大きい点において形態素解析が困難であったが、自然言語処理の発展により実用的な水準の分析が可能となった。テキストマイニングの対象としては、顧客からのアンケートの回答やコールセンターに寄せられる質問や意見、電子掲示板やメーリングリストに蓄積されたテキストデータなどがある。 (ja)
  • Mineração de texto, conhecida também como mineração de dados textuais e semelhante à análise textual, refere-se ao processo de obtenção de informações importantes de um texto. Informações importantes são obtidas normalmente pela elaboração de padrões e tendências através de meios como o padrão estatístico de aprendizagem. Geralmente a mineração de texto envolve o processo de estruturação do texto de entrada (frequentemente análise, junto com a adição de algumas características linguísticas derivadas e com a retirada de outras, e com a subsequente inserção em um banco de dados), de derivação de padrões dentro da estrutura de dados e, por fim, de avaliação e interpretação do resultado. Geralmente, “importante” em mineração de texto refere-se a algumas combinações de relevância, originalidade e interesse. Tarefas típicas de mineração de texto incluem categorização e agrupamento de texto, extração de conceito/entidade, produção de taxonomias granulares, análise de sentimentos, resumo de documentos e modelagem de relações entre entidades (ex., aprender relações entre entidades nomeadas). A análise de texto envolve informações de recuperação, análise lexical a fim de estudar a frequência de distribuição de palavras, reconhecimento de padrões, identificação/anotação, extração de informações, técnicas de mineração de dados que incluem link e associação de análises, visualização e analítica preditiva. O objetivo maior é transformar o texto em dados para análise, por meio da aplicação do processamento de linguagem natural (PLN) e de métodos analíticos. Uma aplicação comum é examinar um conjunto de documentos escritos em uma linguagem natural e, ou modelar o conjunto de documentos para fins de classificação preditiva ou preencher um banco de dados ou índice de pesquisa com as informações extraídas. (pt)
  • Text mining(eksploracja tekstu) – ogólna nazwa metod eksploracji danych służących do wydobywania danych z tekstu i ich późniejszej obróbki. Metody text mining stosowane są np. do statystycznego przetwarzania: * artykułów prasowych * wiadomości poczty elektronicznej * otwartych odpowiedzi na pytania ankietowe * opisów dolegliwości, podawanych przez pacjentów * komentarzy do sesji giełdowych i zdarzeń dotyczące spółek * życiorysów zawodowych i listów motywacyjnych * tekstów reklamacji konsumenckich Text mining może polegać na znalezieniu kluczowych fraz, zdań, które zostają następnie zakodowane pod postacią zmiennych numerycznych. Później stosuje się metody statystyki i eksploracji danych w celu odkrycia zależności pomiędzy zmiennymi. Ze względu na to, że powstające zmienne są zwykle nominalne, szczególnie użyteczna jest analiza koszykowa. (pl)
  • Textmining, ook wel textdatamining, verwijst naar het proces om met allerhande ICT-technieken waardevolle informatie te halen uit grote hoeveelheden tekstmateriaal. Met deze technieken wordt gepoogd patronen en tendensen te ontwaren. Concreet gaat men teksten softwarematig structureren en ontleden, transformeren, vervolgens inbrengen in databanken, en ten slotte evalueren en interpreteren. Textmining is verwant aan tekstanalyse; de termen worden vaak door elkaar gebruikt. Hoewel ook in tekstanalyse kwantitatieve methoden worden gebruikt, verwijst textmining eerder naar analyse op grote schaal: bij ondernemingen in het kader van business intelligence, bijvoorbeeld om feedback van klanten te analyseren, en bijvoorbeeld in de sociale media om de publieke opinie in kaart te brengen (sentiment analysis). In de biotechnologie wordt textmining ingezet om wetenschappelijke informatie te analyseren uit de gigantische hoeveelheid publicaties. Textmining wordt ook benut door inlichtingendiensten. In die zin kan textmining beschouwd worden als een vorm van datamining. Tekstmining kan daarbij als doel dienen om een dataset te genereren waarop vervolgens statistische analyses worden toegepast. Tekstmining is een toegankelijker woord voor bepaalde onderdelen uit het brede gebied van computationele taalkunde. Dit kennisgebied houdt zich bezig met het verwerken van menselijke taal door computers. (nl)
  • Интеллектуальный анализ текстов (ИАТ, англ. text mining) — направление в искусственном интеллекте, целью которого является получение информации из коллекций текстовых документов, основываясь на применении эффективных в практическом плане методов машинного обучения и обработки естественного языка. Название «интеллектуальный анализ текстов» перекликается с понятием «интеллектуальный анализ данных» (ИАД, англ. data mining), что выражает схожесть их целей, подходов к переработке информации и сфер применения; разница проявляется лишь в конечных методах, а также в том, что ИАД имеет дело с хранилищами и базами данных, а не электронными библиотеками и корпусами текстов. (ru)
  • 文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常涉及输入文本的处理过程(通常进行分析,同时加上一些衍生语言特征以及消除杂音,随后插入到数据库中) ,产生结构化数据,并最终评价和解释输出。'高品质'的文本挖掘通常是指某种组合的相关性,新颖性和趣味性。典型的文本挖掘方法包括文本分类,文本聚类,概念/实体挖掘,生产精确分类,观点分析,文档摘要和实体关系模型(即,学习已命名实体之间的关系) 。文本分析包括了信息检索、词典分析来研究词语的频数分布、模式识别、标签\注释、信息抽取,数据挖掘技术包括链接和关联分析、可视化和预测分析。本质上,首要的任务是,通过自然语言处理(NLP)和分析方法,将文本转化为数据进行分析。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 318439 (xsd:integer)
dbo:wikiPageRevisionID
  • 744969720 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • Text Mining, seltener auch Textmining, Text Data Mining oder Textual Data Mining, ist ein Bündel von Algorithmus-basierten Analyseverfahren zur Entdeckung von Bedeutungsstrukturen aus un- oder schwachstrukturierten Textdaten. Mit statistischen und linguistischen Mitteln erschließt Text-Mining-Software aus Texten Strukturen, die die Benutzer in die Lage versetzen sollen, Kerninformationen der verarbeiteten Texte schnell zu erkennen. Im Optimalfall liefern Text-Mining-Systeme Informationen, von denen die Benutzer zuvor nicht wissen, ob und dass sie in den verarbeiteten Texten enthalten sind. Bei zielgerichteter Anwendung sind Werkzeuge des Text Mining außerdem dazu in der Lage, Hypothesen zu generieren, diese zu überprüfen und schrittweise zu verfeinern. (de)
  • La minería de textos se refiere al proceso de derivar información nueva de textos. (es)
  • テキストマイニング(text mining)は、文字列を対象としたデータマイニングのことである。通常の文章からなるデータを単語や文節で区切り、それらの出現の頻度や共出現の相関、出現傾向、時系列などを解析することで有用な情報を取り出す、テキストデータの分析方法である。 テキストデータの多くは形式が定まっておらず、また日本語は英語などと比べて単語の境界判別の必要性(→わかち書き)や文法ゆらぎが大きい点において形態素解析が困難であったが、自然言語処理の発展により実用的な水準の分析が可能となった。テキストマイニングの対象としては、顧客からのアンケートの回答やコールセンターに寄せられる質問や意見、電子掲示板やメーリングリストに蓄積されたテキストデータなどがある。 (ja)
  • Интеллектуальный анализ текстов (ИАТ, англ. text mining) — направление в искусственном интеллекте, целью которого является получение информации из коллекций текстовых документов, основываясь на применении эффективных в практическом плане методов машинного обучения и обработки естественного языка. Название «интеллектуальный анализ текстов» перекликается с понятием «интеллектуальный анализ данных» (ИАД, англ. data mining), что выражает схожесть их целей, подходов к переработке информации и сфер применения; разница проявляется лишь в конечных методах, а также в том, что ИАД имеет дело с хранилищами и базами данных, а не электронными библиотеками и корпусами текстов. (ru)
  • 文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常涉及输入文本的处理过程(通常进行分析,同时加上一些衍生语言特征以及消除杂音,随后插入到数据库中) ,产生结构化数据,并最终评价和解释输出。'高品质'的文本挖掘通常是指某种组合的相关性,新颖性和趣味性。典型的文本挖掘方法包括文本分类,文本聚类,概念/实体挖掘,生产精确分类,观点分析,文档摘要和实体关系模型(即,学习已命名实体之间的关系) 。文本分析包括了信息检索、词典分析来研究词语的频数分布、模式识别、标签\注释、信息抽取,数据挖掘技术包括链接和关联分析、可视化和预测分析。本质上,首要的任务是,通过自然语言处理(NLP)和分析方法,将文本转化为数据进行分析。 (zh)
  • Text mining, also referred to as text data mining, roughly equivalent to , refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/en (en)
  • 25بك المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) التنقيب في النصوص، وأحيانا يشار إليها بالتناوب باسم التنقيب في البيانات النصية، أي ما يعني تقريبا تحليلات النصوص، يشير إلى عملية استخلاص معلومات عالية الجودة من النص. واستخلاص المعلومات عالية الجودة يكون من خلال التقسيم للأنماط والاتجاهات من خلال وسائل مثل التعلم الإحصائي للانماط. وعادة ما يتطلب التنقيب في النصوص ال عملية هيكلة للنص المدخل (عادة تحليل، جنبا إلى جنب مع إضافة بعض المميزات اللغوية المشتقة وإزالة أخرى، ومن ثم الإدراج في قاعدة بيانات)، واستخلاص الأنماط في البيانات المهيكلة، وأخيرا تقييم وتفسير للناتج. 'ذات جودة عالية' في مجال التنقيب في النصوص عادة ما يشير مزيج من الصلة، والحداثة، والاهتمام. المهام النموذجية للتنقيب في النصوص تشمل تصنيف النصوص، تجمي (ar)
  • La fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Les disciplines impliquées sont donc la linguistique calculatoire, l'ingénierie des langues, l'apprentissage artificiel, les statistiques et l'informatique. (fr)
  • Mineração de texto, conhecida também como mineração de dados textuais e semelhante à análise textual, refere-se ao processo de obtenção de informações importantes de um texto. Informações importantes são obtidas normalmente pela elaboração de padrões e tendências através de meios como o padrão estatístico de aprendizagem. Geralmente a mineração de texto envolve o processo de estruturação do texto de entrada (frequentemente análise, junto com a adição de algumas características linguísticas derivadas e com a retirada de outras, e com a subsequente inserção em um banco de dados), de derivação de padrões dentro da estrutura de dados e, por fim, de avaliação e interpretação do resultado. Geralmente, “importante” em mineração de texto refere-se a algumas combinações de relevância, originalidade (pt)
  • Text mining(eksploracja tekstu) – ogólna nazwa metod eksploracji danych służących do wydobywania danych z tekstu i ich późniejszej obróbki. Metody text mining stosowane są np. do statystycznego przetwarzania: * artykułów prasowych * wiadomości poczty elektronicznej * otwartych odpowiedzi na pytania ankietowe * opisów dolegliwości, podawanych przez pacjentów * komentarzy do sesji giełdowych i zdarzeń dotyczące spółek * życiorysów zawodowych i listów motywacyjnych * tekstów reklamacji konsumenckich (pl)
  • Textmining, ook wel textdatamining, verwijst naar het proces om met allerhande ICT-technieken waardevolle informatie te halen uit grote hoeveelheden tekstmateriaal. Met deze technieken wordt gepoogd patronen en tendensen te ontwaren. Concreet gaat men teksten softwarematig structureren en ontleden, transformeren, vervolgens inbrengen in databanken, en ten slotte evalueren en interpreteren. Textmining is verwant aan tekstanalyse; de termen worden vaak door elkaar gebruikt. (nl)
rdfs:label
  • Text mining (en)
  • تنقيب في النصوص (ar)
  • Text Mining (de)
  • Minería de textos (es)
  • Fouille de textes (fr)
  • テキストマイニング (ja)
  • Text mining (pl)
  • Textmining (nl)
  • Mineração de texto (pt)
  • Интеллектуальный анализ текста (ru)
  • 文本挖掘 (zh)
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:division of
is dbo:field of
is dbo:genre of
is dbo:industry of
is dbo:product of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of