In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1 and all numbers in between. Other examples of intervals are the set of numbers such that 0 < x < 1, the set of all of real numbers , the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element).

Property Value
dbo:abstract
  • في الرياضيات ، الفترة (الحقيقية) هي مجموعة من الأرقام الحقيقية بحيث أن أي رقم يقع بين رقمين في المجموعة هو أيضا عنصر في تلك المجموعة. على سبيل المثال، مجموعة الأرقام x التي تحقق أن 0 ≤ x ≤ 1 هي فترة تحتوي كلا من 0 و1 ، وكذلك جميع الأرقام بينهما. أمثلة أخرى للفترات هي مجموعة الأرقام الحقيقية ، كذلك مجموعة الأرقام الحقيقية السالبة، والمجموعة الفارغة. تلعب الفترات دورًا مهمًا في نظرية التكامل، لأنها أبسط مجموعة يسهل تعريف "حجمها" أو "قياسها" أو "طولها". يمكن بعد ذلك توسيع مفهوم القياس ليشمل مجموعات أكثر تعقيدًا من الأعداد الحقيقية، مما يؤدي إلى قياس بوريل وفي نهاية المطاف إلى مقياس ليبيج. يتم تعريف الفترات على مجموعة اختيارية مرتبة ترتيبا كليا ، مثل الأعداد الصحيحة أو الأرقام الكسرية. يتم مراعاة تدوين الفترات الصحيحة في القسم الخاص أدناه. (ar)
  • V matematice se jako interval označuje množina reálných čísel, které leží mezi dvěma určenými čísly, která se označují jako meze intervalu. Rozdíl mezi mezemi se označuje jako délka, šířka, rozměr nebo velikost intervalu. Např. interval „“ popisuje množinu reálných čísel mezi 10 a 15, bez těchto čísel. Interval „“ pak označuje množinu reálných čísel mezi 10 a 15, včetně těchto čísel. Délka obou těchto intervalů je 5. Obecně je v abstraktní matematice interval definován jako podmnožina S nějaké lineárně uspořádané množiny T, pro kterou platí, že kdykoli a , pak . Výše uvedená definice pak je důležitým speciálním případem s . Jako oddělovač mezí používáme přednostně „;“, protože při oddělovači „,“ může dojít k záměně s desetinnou čárkou v číslech vyjadřující meze. (cs)
  • En matemàtica, un interval (o essent més precisos, un interval real) és un conjunt que conté tots i cadascun dels nombres reals que es troben entre dos nombres indicats anomenats extrems. A més, l'interval pot contenir o no aquests extrems en funció de si l'interval és tancat o obert. Un interval obert, és un interval que no inclou cap dels dos extrems, i un interval tancat és aquell que sí que els inclou. * S'utilitza la notació [a,b] quan un interval és tancat als seus dos extrems. * S'utilitza la notació ]a,b[ o (a,b) quan és obert en ambdós extrems. * S'utilitza la notació (a,b] o ]a,b] si és obert en l'extrem esquerre i tancat al dret, i paral·lelament, s'utilitza [a,b) o [a,b[ si és obert en l'extrem dret i tancat a l'esquerre. Per exemple (0,2) es refereix al tram entre 0 i 2 que no inclou el zero ni el dos, però sí que conte tots els punts entre 0 i 2, fins i tot els que són molt propers a 0 i a 2. Un altre exemple, l'interval ]-3,5], es refereix al tram des de -3 a 5, i inclou a tots els punts entre -3 i 5, amb l'excepció de -3, però sí que inclou el 5 i els punts molt propers a -3 per la dreta. Un interval d'extrems a i b s'anomena interval propi si a < b. De fet, si b < a l'interval sempre serà el conjunt buit. Quan a = b, es poden donar dos casos: Si l'interval és tancat es dóna [a,a] = { a } i s'anomena interval degenerat o singletó. Si l'interval no és tancat llavors és el conjunt buit. Els intervals on els dos extrems són nombres reals s'anomenen intervals fitats. També es poden definir intervals que no tinguin extrem superior o inferior que s'anomenen no fitats. En aquest cas s'utilitza el símbol −∞ per a l'extrem inferior o +∞ per a l'extrem superior, que s'escriuen amb el claudàtor d'extrem obert perquè no són nombres reals, sinó símbols que no formen part de l'interval. Així, si a és un nombre real: * L'interval tancat [a,+∞[ o [a,+∞) inclou tots els nombres reals més grans o iguals que a. * L'interval obert ]a,+∞[ o (a,+∞) inclou tots els nombres reals més grans que a. * L'interval tancat ]−∞,a] o (−∞,a] inclou tots els nombres reals més petits o iguals que a. * L'interval obert ]−∞,a[ o (−∞,a) inclou tots els nombres reals més petits que a. De fet, també es pot escriure l'interval ]−∞,+∞[ o (−∞,+∞) que es correspon amb tota la recta real, és a dir, és igual a ℝ. Els intervals es poden generalitzar de manera trivial a subconjunts de la recta real estesa. Dins de la recta real estesa sí que té sentit escriure el claudàtor d'extrem tancat amb −∞ o +∞, però llavors deixen de ser intervals reals. (ca)
  • Το διάστημα είναι ένα συνεχές σύνολο πραγματικών αριθμών, το οποίο ορίζεται από δύο πραγματικούς αριθμούς ή τα σύμβολα του συν ή πλην άπειρο (), τα οποία λέγονται άκρα και του οποίου τα στοιχεία βρίσκονται μεταξύ αυτών των αριθμών. Αντιστοιχεί στο ευθύγραμμο τμήμα της γεωμετρίας. Το άκρο ορίζεται ως κλειστό, αν συμπεριλαμβάνεται στο σύνολο ή ανοιχτό αν δε συμπεριλαμβάνεται στο σύνολο. Αν ένα άκρο είναι άπειρο υποχρεωτικά είναι ανοιχτό. Έστω δύο πραγματικοί αριθμοί ή άπειρα α, β με α<β. Υπάρχουν τέσσερα είδη διαστημάτων που ορίζουν: * Κλειστό διάστημα α,β: {} * Ανοιχτό διάστημα α,β: {} * Ανοιχτό α, κλειστό β διάστημα: {} * Κλειστό α, ανοιχτό β διάστημα: {} Τα διαστήματα συμβολίζονται γραφικά με έντονα ευθύγραμμα τμήματα. Τα άκρα συμβολίζονται με κουκκίδες. Αν ένα άκρο είναι ανοιχτό, συμβολίζεται με κυκλάκι, αν είναι κλειστό το κυκλάκι γεμίζει, ώστε να γίνει κουκκίδα. Αυτός ο συμβολισμός και χαρακτηρισμός των άκρων δεν περιορίζεται στα διαστήματα, αλλά σε οποιαδήποτε καμπύλη με άκρα που συμπεριλαμβάνονται ή όχι. (el)
  • In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1 and all numbers in between. Other examples of intervals are the set of numbers such that 0 < x < 1, the set of all of real numbers , the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element). Real intervals play an important role in the theory of integration because they are the simplest sets whose "size" or "measure" or "length" is easy to define. The concept of measure can then be extended to more complicated sets of real numbers, leading to the Borel measure and eventually to the Lebesgue measure. Intervals are central to interval arithmetic, a general numerical computing technique that automatically provides guaranteed enclosures for arbitrary formulas, even in the presence of uncertainties, mathematical approximations, and arithmetic roundoff. Intervals are likewise defined on an arbitrary totally ordered set, such as integers or rational numbers. The notation of integer intervals is considered . (en)
  • Intervalo estas subaro de partorda aro kiu entenas ĉion inter komenco kaj fino (komenco kaj fino estas elektata elementoj de aro). (eo)
  • Als Intervall wird in der Analysis, der Ordnungstopologie und verwandten Gebieten der Mathematik eine „zusammenhängende“ Teilmenge einer total (oder linear) geordneten Trägermenge (zum Beispiel der Menge der reellen Zahlen ) bezeichnet. Ein (beschränktes) Intervall besteht aus allen Elementen , die man mit zwei begrenzenden Elementen der Trägermenge, der unteren Grenze und der oberen Grenze des Intervalls, der Größe nach vergleichen kann und die im Sinne dieses Vergleichs zwischen den Grenzen liegen. Dabei können die Grenzen des Intervalls dem Intervall angehören (abgeschlossenes Intervall, ), nicht angehören (offenes Intervall ) oder teilweise angehören (halboffenes Intervall, ; ). Zusammenhängend bedeutet hier: Wenn zwei Objekte in der Teilmenge enthalten sind, dann sind auch alle Objekte, die (in der Trägermenge) dazwischen liegen, darin enthalten. Die wichtigsten Beispiele für Trägermengen sind die Mengen der reellen, der rationalen, der ganzen und der natürlichen Zahlen. In den genannten Fällen und allgemeiner immer dann, wenn eine Differenz zwischen zwei Elementen der Trägermenge erklärt ist, bezeichnet man die Differenz zwischen der oberen und unteren Grenze des Intervalls () als Länge des Intervalls oder kurz Intervalllänge; für diese Differenz ist auch die Bezeichnung Intervalldurchmesser geläufig. Wenn ein arithmetisches Mittel der Intervallgrenzen erklärt ist, wird dieses als Intervallmittelpunkt bezeichnet. (de)
  • Un intervalo (del latín inter-vallum, espacio, pausa)​ es un subconjunto . A tal subconjunto se le exige que para cualesquiera y todo con se satisfaga que .​ Específicamente, un intervalo es un subconjunto conexo de la recta real . Es un conjunto medible y tiene la misma cardinalidad que la recta real.​ (es)
  • Matematikan, tartea (erreala) zenbaki errealen multzo bat da, propietate hau betetzen duena: tarteko edozein bi zenbakiren artean dagoen zenbakia ere tartearen barnean dago. Adibidez, betetzen duten zenbaki guztien multzoa eta , eta bitarteko zenbaki guztiak barnean hartzen dituen tartea da. Beste tarte bat da, zenbaki erreal guztien multzoa alegia eta baita multzo hutsa. (eu)
  • Sa mhatamaitic, déanann gach uimhir idir dhá uimhir fhosaithe, a agus b, eatramh oscailte, a scríobhtar mar (a, b). Má chuimsíonn an t-eatramh na huimhreacha a is b, tugtar eatramh iata [a, b] air. Tugtar teorainneacha an eatraimh ar a is b. Léirítear eatramh oscailte ar an uimhirlíne le críochchiorcal neamhscáthlínithe. Bíonn críoch-chiorcal scáthlínithe ag eatramh iata. (ga)
  • Interval (bilangan real) dalam matematika adalah suatu himpunan bilangan real dengan sifat bahwa setiap bilangan yang terletak di antara dua bilangan dalam himpunan itu juga termasuk ke dalam himpunan. Misalnya, himpunan semua bilangan x memenuhi 0 ≤ x ≤ 1 adalah suatu interval yang memuat 0 dan 1, maupun semua bilangan di antara keduanya. Contoh lain interval adalah suatu himpunan dari semua bilangan real , himpunan semua bilangan real negatif, dan himpunan kosong. Interval real berperang penting dalam teori integrasi, karena merupakan himpunan-himpunan paling sederhana yang "ukuran" atau "pengukuran" atau "panjang"-nya mudah didefinisikan. Konsep pengukuran dapat diperluas untuk himpunan-himpunan bilangan real yang lebih rumit, mengarah kepadea dan akhirnya kepada . Interval adalah sentral bagi , suatu teknik numerical computing umum yang secara otomatis menyediakan penutupan pasti bagi rumus-rumus sembarang, bahkan dengan adanya ketidakpastian, perkiraan matematika, dan pembulatan aritmetika. (in)
  • En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble compris entre deux valeurs. Cette notion première s'est ensuite développée jusqu'à aboutir aux définitions suivantes. (fr)
  • 数学における(実)区間(じつくかん、英: (real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、0 ≤ x ≤ 1 を満たす数 x 全体の成す集合は、0 と 1, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合 R, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としての区間演算を考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。 (ja)
  • In matematica, un intervallo è un sottoinsieme dei numeri reali formato da tutti i punti della retta reale che sono compresi tra due estremi e . Gli estremi possono (ma non devono necessariamente) appartenere all'intervallo e possono essere infiniti. (it)
  • 수학에서, 구간(區間, 영어: interval)은 원순서 집합의 주어진 두 원소 사이의 모든 원소들의 집합이다. 특히, 표준적인 전순서를 부여한 실수의 집합 속의 구간을 생각할 수 있다. (ko)
  • In de wiskunde is in een verzameling waarop een totale ordening is gedefinieerd, een interval een deelverzameling waar geen tussenliggende elementen ontbreken. Als de hele verzameling "uit één stuk" is, zou men kunnen zeggen dat een interval een deelverzameling is die ook uit één stuk is. De eigenlijke intervallen bestaan uit alle getallen die zich tussen twee gegeven getallen, de eindpunten, bevinden, waarbij elk eindpunt al dan niet meegerekend wordt. Oneigenlijke intervallen zijn deelverzamelingen die slechts aan één zijde begrensd zijn door een eindpunt. Verder is er nog de hele verzameling, die volgens de genoemde definitie ook een interval is. (nl)
  • Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału. (pl)
  • Промежуток, или более точно, промежуток числовой прямой — множество вещественных чисел, обладающее тем свойством, что вместе с любыми двумя числами содержит любое, лежащее между ними. С использованием логических символов, это определение можно записать так: — промежуток, если В качестве примеров промежутков можно привести следующие множества: (ru)
  • Inom matematiken är ett intervall en sammanhängande delmängd av den reella tallinjen eller av en annan partialordnad mängd. (sv)
  • 在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。 (zh)
  • Числовий проміжок — у математичному аналізі, множина (сукупність) дійсних чисел, що містяться між двома числами (точками на осі координат) або невласними числами. Проміжок може включати або не включати кінці проміжку. Цим проміжок відрізняється від інтервалу в класичному розумінні — тобто, відкритого проміжку, в який не включено його кінці. Однак терміни "проміжок" та "інтервал" нерідко використовують як синоніми, особливо в перекладах з англомовної літератури, оскільки під терміном "interval" англійською розуміється проміжок. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 49172 (xsd:integer)
dbo:wikiPageLength
  • 23195 (xsd:integer)
dbo:wikiPageRevisionID
  • 981618437 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Interval (en)
dbp:urlname
  • Interval (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Intervalo estas subaro de partorda aro kiu entenas ĉion inter komenco kaj fino (komenco kaj fino estas elektata elementoj de aro). (eo)
  • Un intervalo (del latín inter-vallum, espacio, pausa)​ es un subconjunto . A tal subconjunto se le exige que para cualesquiera y todo con se satisfaga que .​ Específicamente, un intervalo es un subconjunto conexo de la recta real . Es un conjunto medible y tiene la misma cardinalidad que la recta real.​ (es)
  • Matematikan, tartea (erreala) zenbaki errealen multzo bat da, propietate hau betetzen duena: tarteko edozein bi zenbakiren artean dagoen zenbakia ere tartearen barnean dago. Adibidez, betetzen duten zenbaki guztien multzoa eta , eta bitarteko zenbaki guztiak barnean hartzen dituen tartea da. Beste tarte bat da, zenbaki erreal guztien multzoa alegia eta baita multzo hutsa. (eu)
  • Sa mhatamaitic, déanann gach uimhir idir dhá uimhir fhosaithe, a agus b, eatramh oscailte, a scríobhtar mar (a, b). Má chuimsíonn an t-eatramh na huimhreacha a is b, tugtar eatramh iata [a, b] air. Tugtar teorainneacha an eatraimh ar a is b. Léirítear eatramh oscailte ar an uimhirlíne le críochchiorcal neamhscáthlínithe. Bíonn críoch-chiorcal scáthlínithe ag eatramh iata. (ga)
  • En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble compris entre deux valeurs. Cette notion première s'est ensuite développée jusqu'à aboutir aux définitions suivantes. (fr)
  • 数学における(実)区間(じつくかん、英: (real) interval)は、実数からなる集合で、その集合内の任意の二点に対しその二点の間にあるすべての数がその集合に属するという性質を持つものである。例えば、0 ≤ x ≤ 1 を満たす数 x 全体の成す集合は、0 と 1, およびその間の数すべてを含区間である。他の著しい例として、実数全体の成す集合 R, 負の実数全体の成す集合および空集合などが挙げられる。 実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度やルベーグ測度といったような概念までにつながっていく。 不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の法としての区間演算を考えるにあたって、区間はその中核概念を成す。 勝手な全順序集合、例えば整数の集合や有理数の集合上でも、区間の概念は定義することができる。 (ja)
  • In matematica, un intervallo è un sottoinsieme dei numeri reali formato da tutti i punti della retta reale che sono compresi tra due estremi e . Gli estremi possono (ma non devono necessariamente) appartenere all'intervallo e possono essere infiniti. (it)
  • 수학에서, 구간(區間, 영어: interval)은 원순서 집합의 주어진 두 원소 사이의 모든 원소들의 집합이다. 특히, 표준적인 전순서를 부여한 실수의 집합 속의 구간을 생각할 수 있다. (ko)
  • In de wiskunde is in een verzameling waarop een totale ordening is gedefinieerd, een interval een deelverzameling waar geen tussenliggende elementen ontbreken. Als de hele verzameling "uit één stuk" is, zou men kunnen zeggen dat een interval een deelverzameling is die ook uit één stuk is. De eigenlijke intervallen bestaan uit alle getallen die zich tussen twee gegeven getallen, de eindpunten, bevinden, waarbij elk eindpunt al dan niet meegerekend wordt. Oneigenlijke intervallen zijn deelverzamelingen die slechts aan één zijde begrensd zijn door een eindpunt. Verder is er nog de hele verzameling, die volgens de genoemde definitie ook een interval is. (nl)
  • Przedział – zbiór elementów danego zbioru częściowo uporządkowanego, zawartych między dwoma ustalonymi elementami tego zbioru, nazywanymi początkiem i końcem przedziału. (pl)
  • Промежуток, или более точно, промежуток числовой прямой — множество вещественных чисел, обладающее тем свойством, что вместе с любыми двумя числами содержит любое, лежащее между ними. С использованием логических символов, это определение можно записать так: — промежуток, если В качестве примеров промежутков можно привести следующие множества: (ru)
  • Inom matematiken är ett intervall en sammanhängande delmängd av den reella tallinjen eller av en annan partialordnad mängd. (sv)
  • 在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。 (zh)
  • Числовий проміжок — у математичному аналізі, множина (сукупність) дійсних чисел, що містяться між двома числами (точками на осі координат) або невласними числами. Проміжок може включати або не включати кінці проміжку. Цим проміжок відрізняється від інтервалу в класичному розумінні — тобто, відкритого проміжку, в який не включено його кінці. Однак терміни "проміжок" та "інтервал" нерідко використовують як синоніми, особливо в перекладах з англомовної літератури, оскільки під терміном "interval" англійською розуміється проміжок. (uk)
  • في الرياضيات ، الفترة (الحقيقية) هي مجموعة من الأرقام الحقيقية بحيث أن أي رقم يقع بين رقمين في المجموعة هو أيضا عنصر في تلك المجموعة. على سبيل المثال، مجموعة الأرقام x التي تحقق أن 0 ≤ x ≤ 1 هي فترة تحتوي كلا من 0 و1 ، وكذلك جميع الأرقام بينهما. أمثلة أخرى للفترات هي مجموعة الأرقام الحقيقية ، كذلك مجموعة الأرقام الحقيقية السالبة، والمجموعة الفارغة. تلعب الفترات دورًا مهمًا في نظرية التكامل، لأنها أبسط مجموعة يسهل تعريف "حجمها" أو "قياسها" أو "طولها". يمكن بعد ذلك توسيع مفهوم القياس ليشمل مجموعات أكثر تعقيدًا من الأعداد الحقيقية، مما يؤدي إلى قياس بوريل وفي نهاية المطاف إلى مقياس ليبيج. (ar)
  • En matemàtica, un interval (o essent més precisos, un interval real) és un conjunt que conté tots i cadascun dels nombres reals que es troben entre dos nombres indicats anomenats extrems. A més, l'interval pot contenir o no aquests extrems en funció de si l'interval és tancat o obert. Un interval obert, és un interval que no inclou cap dels dos extrems, i un interval tancat és aquell que sí que els inclou. Per exemple (0,2) es refereix al tram entre 0 i 2 que no inclou el zero ni el dos, però sí que conte tots els punts entre 0 i 2, fins i tot els que són molt propers a 0 i a 2. (ca)
  • V matematice se jako interval označuje množina reálných čísel, které leží mezi dvěma určenými čísly, která se označují jako meze intervalu. Rozdíl mezi mezemi se označuje jako délka, šířka, rozměr nebo velikost intervalu. Např. interval „“ popisuje množinu reálných čísel mezi 10 a 15, bez těchto čísel. Interval „“ pak označuje množinu reálných čísel mezi 10 a 15, včetně těchto čísel. Délka obou těchto intervalů je 5. Jako oddělovač mezí používáme přednostně „;“, protože při oddělovači „,“ může dojít k záměně s desetinnou čárkou v číslech vyjadřující meze. (cs)
  • Als Intervall wird in der Analysis, der Ordnungstopologie und verwandten Gebieten der Mathematik eine „zusammenhängende“ Teilmenge einer total (oder linear) geordneten Trägermenge (zum Beispiel der Menge der reellen Zahlen ) bezeichnet. Ein (beschränktes) Intervall besteht aus allen Elementen , die man mit zwei begrenzenden Elementen der Trägermenge, der unteren Grenze und der oberen Grenze des Intervalls, der Größe nach vergleichen kann und die im Sinne dieses Vergleichs zwischen den Grenzen liegen. Dabei können die Grenzen des Intervalls dem Intervall angehören (abgeschlossenes Intervall, ), nicht angehören (offenes Intervall ) oder teilweise angehören (halboffenes Intervall, ; ). (de)
  • Το διάστημα είναι ένα συνεχές σύνολο πραγματικών αριθμών, το οποίο ορίζεται από δύο πραγματικούς αριθμούς ή τα σύμβολα του συν ή πλην άπειρο (), τα οποία λέγονται άκρα και του οποίου τα στοιχεία βρίσκονται μεταξύ αυτών των αριθμών. Αντιστοιχεί στο ευθύγραμμο τμήμα της γεωμετρίας. Το άκρο ορίζεται ως κλειστό, αν συμπεριλαμβάνεται στο σύνολο ή ανοιχτό αν δε συμπεριλαμβάνεται στο σύνολο. Αν ένα άκρο είναι άπειρο υποχρεωτικά είναι ανοιχτό. Έστω δύο πραγματικοί αριθμοί ή άπειρα α, β με α<β. Υπάρχουν τέσσερα είδη διαστημάτων που ορίζουν: (el)
  • In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0, 1 and all numbers in between. Other examples of intervals are the set of numbers such that 0 < x < 1, the set of all of real numbers , the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element). (en)
  • Interval (bilangan real) dalam matematika adalah suatu himpunan bilangan real dengan sifat bahwa setiap bilangan yang terletak di antara dua bilangan dalam himpunan itu juga termasuk ke dalam himpunan. Misalnya, himpunan semua bilangan x memenuhi 0 ≤ x ≤ 1 adalah suatu interval yang memuat 0 dan 1, maupun semua bilangan di antara keduanya. Contoh lain interval adalah suatu himpunan dari semua bilangan real , himpunan semua bilangan real negatif, dan himpunan kosong. (in)
rdfs:label
  • فترة (رياضيات) (ar)
  • Interval (matemàtiques) (ca)
  • Interval (matematika) (cs)
  • Intervall (Mathematik) (de)
  • Διάστημα (μαθηματικά) (el)
  • Interval (mathematics) (en)
  • Intervalo (matematiko) (eo)
  • Intervalo (matemática) (es)
  • Tarte (matematika) (eu)
  • Intervalle (mathématiques) (fr)
  • Eatramh (matamaitic) (ga)
  • Interval (matematika) (in)
  • 区間 (数学) (ja)
  • Intervallo (matematica) (it)
  • 구간 (ko)
  • Przedział (matematyka) (pl)
  • Interval (wiskunde) (nl)
  • Промежуток (математика) (ru)
  • Intervall (matematik) (sv)
  • 區間 (zh)
  • Проміжок (математика) (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of