This HTML5 document contains 619 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
xsdhhttp://www.w3.org/2001/XMLSchema#
yagohttp://dbpedia.org/class/yago/
dbohttp://dbpedia.org/ontology/
dbpedia-kohttp://ko.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
dbpedia-simplehttp://simple.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
n38https://global.dbpedia.org/id/
goldhttp://purl.org/linguistics/gold/
n14https://www.quantamagazine.org/
dbpedia-ethttp://et.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbpedia-rohttp://ro.dbpedia.org/resource/
dbrhttp://dbpedia.org/resource/
dbpedia-cyhttp://cy.dbpedia.org/resource/
dbpedia-dahttp://da.dbpedia.org/resource/
dbpedia-svhttp://sv.dbpedia.org/resource/
dbpedia-cahttp://ca.dbpedia.org/resource/
n35http://us.metamath.org/mpegif/
dbpedia-eshttp://es.dbpedia.org/resource/
dbpedia-trhttp://tr.dbpedia.org/resource/
dbpedia-pthttp://pt.dbpedia.org/resource/
n44http://lt.dbpedia.org/resource/
dbpedia-hrhttp://hr.dbpedia.org/resource/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbpedia-nlhttp://nl.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
freebasehttp://rdf.freebase.com/ns/
n26http://plato.stanford.edu/entries/set-theory/
dbpedia-jahttp://ja.dbpedia.org/resource/
dbpedia-arhttp://ar.dbpedia.org/resource/
n34https://projecteuclid.org/euclid.lnl/
dbphttp://dbpedia.org/property/
dbpedia-ukhttp://uk.dbpedia.org/resource/
n41http://gdz.sub.uni-goettingen.de/
dbchttp://dbpedia.org/resource/Category:
dbpedia-vihttp://vi.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dctermshttp://purl.org/dc/terms/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-alshttp://als.dbpedia.org/resource/
dbpedia-srhttp://sr.dbpedia.org/resource/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-cshttp://cs.dbpedia.org/resource/
n11https://archive.org/details/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-plhttp://pl.dbpedia.org/resource/
n27https://books.google.com/
n23http://dbpedia.org/resource/Wikt:
dbpedia-lahttp://la.dbpedia.org/resource/

Statements

Subject Item
dbr:Cardinality_of_the_continuum
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Amorphous_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Preorder
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Prewellordering
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Principia_Mathematica
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Quine–Putnam_indispensability_argument
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Robert_M._Solovay
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Elementary_definition
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_axioms
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_first-order_theories
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Morita_conjectures
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Mostowski_collapse_lemma
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Mouse_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Multiverse_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:New_Foundations
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Lévy_hierarchy
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Mereology
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Metamathematics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Scott's_trick
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Determinacy
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:John_von_Neumann
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Beth_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Paul_Cohen
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Peano_axioms
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Culture_of_Israel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Curry's_paradox
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ultrafilter_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Universe_(mathematics)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Von_Neumann–Bernays–Gödel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Dedekind-infinite_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Definable_real_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Independence_(mathematical_logic)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Index_of_philosophy_articles_(R–Z)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Infinite_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Internal_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Intuitionism
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Kőnig's_lemma
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:L(R)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Limit_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_important_publications_in_mathematics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_incomplete_proofs
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_mathematical_logic_topics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_set_theory_topics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Transfinite_induction
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Notation
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Solovay_model
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Timeline_of_category_theory_and_related_mathematics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Consistency
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Constructible_universe
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Mathematical_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Mathematics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Measurable_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Russell's_paradox
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Saharon_Shelah
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:General_topology
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Naimark's_problem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Nice_name
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Tarski–Grothendieck_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Class_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Enumeration
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Georg_Cantor
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:George_Boolos
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Gimel_function
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Bounded_quantifier
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Naive_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Conglomerate_(mathematics)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Conservative_extension
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Constructive_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Continuum_hypothesis
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Criticism_of_nonstandard_analysis
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Epsilon-induction
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Equinumerosity
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Equivalent_definitions_of_mathematical_structures
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Equivalents_of_the_Axiom_of_Choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ramified_forcing
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ordinal_analysis
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Andrzej_Trybulec
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Arnold_Oberschelp
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Berkeley_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Leonidas_Alaoglu
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Lp_space
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel_set_theory_with_the_axiom_of_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel_set_theory
rdf:type
yago:Instrumentality103575240 yago:Whole100003553 dbo:Place yago:Artifact100021939 yago:Object100002684 yago:System104377057 yago:PhysicalEntity100001930 yago:WikicatSystemsOfSetTheory
rdfs:label
Zermelo-Fraenkel-Mengenlehre 策梅洛-弗兰克尔集合论 Система Цермело — Френкеля نظرية المجموعات حسب تسيرميلو-فرانكل Théorie des ensembles de Zermelo-Fraenkel Zermelova–Fraenkelova teorie množin Teoria degli insiemi di Zermelo-Fraenkel Zermelo-Fraenkel-verzamelingenleer Axiomas de Zermelo-Fraenkel Aksjomaty Zermela-Fraenkla ツェルメロ=フレンケル集合論 체르멜로-프렝켈 집합론 Axiomas de Zermelo-Fraenkel ZFC Zermelo–Fraenkel set theory Теорія множин Цермело — Френкеля Zermelo–Fraenkels mängdteori
rdfs:comment
策梅洛-弗兰克尔集合论(英語:Zermelo-Fraenkel Set Theory),含选择公理時常简写为ZFC,是在数学基础中最常用形式的公理化集合论,不含選擇公理的則簡寫為ZF。它是二十世纪早期为了建构一个不会导致类似罗素悖论的矛盾的集合理论所提出的一个公理系统。 La Teoria de conjunts de Zermelo-Fraenkel (ZFC) és el conjunt d'axiomes canònic de la teoria de conjunts. El seu nom es deu als matemàtics que la van desenvolupar: Ernst Zermelo i Abraham Fraenkel i la C per la inclusió de l'axioma d'elecció (Choice en anglès). Existeixen altres conjunts d'axiomes de la Teoria de Conjunts com el NBG (von Neumann, Bernays, Gödel), el TG (Tarski, Grothendieck) i el MK , però són extensions conservadora, no conservadora i pròpia, respectivament, de ZFC. في نظرية المجموعات، نظرية المجموعات حسب تسيرميلوءفراينكل (بالإنجليزية: Zermelo–Fraenkel set theory)‏ هي نظرية طورها عالما الرياضيات إرنست تسيرميلو وابراهام فرانكل في بداية القرن العشرين، من أجل إعطاء نظرية للمجموعات خالية من التناقضات و المفارقات، مفارقة راسل مثالا. In de verzamelingenleer, een deelgebied van de wiskunde, is de Zermelo-Fraenkel-verzamelingenleer, vernoemd naar de wiskundigen Ernst Zermelo en Abraham Fraenkel en vaak afgekort tot ZF, een van de verschillende axiomatische systemen, die in het begin van de twintigste eeuw werden voorgesteld om een verzamelingenleer te formuleren, zonder de paradoxen van de naïeve verzamelingenleer, zoals de paradox van Russell. In het bijzonder bevat ZF niet het , maar slechts een beperkte variant ervan. Daardoor is het in ZF niet voor elke eigenschap mogelijk een verzameling te vormen van alle objecten die deze eigenschap hebben. Zermelova-Fraenkelova teorie množin (ZF) je nejrozšířenější axiomatickou soustavou teorie množin, která je sama o sobě nebo v některých mírných modifikacích používána jako základ pro většinu dalších odvětví matematiky včetně algebry a matematické analýzy. ZF teorie může být například doplněna o axiom výběru - v takovém případě je označována jako ZFC (písmeno C značí výběr, z anglického choice). In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du XIXe siècle par Georg Cantor. L'axiomatisation a été élaborée au début du XXe siècle par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem. En raison de son statut particulier, on considère en général que l'axiome du choix ne fait pas partie de la définition de ZF et on note ZFC la théorie obtenue en ajoutant celui-ci. * * Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году. К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC, англ. Zermelo—Fraenkel set theory with the axiom of Choice). 集合論において、ツェルメロ=フレンケル集合論 (英: Zermelo-Fraenkel set theory) とは、ラッセルのパラドックスなどのパラドックスのない集合論を定式化するために20世紀初頭に提案された公理系である。名前は数学者のツェルメロとフレンケルにちなむ。歴史的に議論を呼んだ選択公理 (AC) を含むツェルメロ=フレンケル集合論は公理的集合論の標準形式であり、今日では最も一般的な数学の基礎となっている。選択公理を含むツェルメロ=フレンケル集合論はZFCと略される。Cは選択 (Choice) 公理を 、 ZFは選択公理を除いたツェルメロ (Zermelo)=フレンケル (Fraenkel) 集合論の公理を表す。 Aksjomaty Zermela-Fraenkla, aksjomatyka Zermela-Fraenkla – układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla. Tym, co w istocie Fraenkel dodał do teorii Zermela, były funkcje. Dla aksjomatyki Zermela-Fraenkla stosuje się często wygodną symbolikę ZF. Ze względu na specyfikę jednego z jej aksjomatów zwanego aksjomatem wyboru, stosuje się także obok ZF oznaczenie ZFC dla zaznaczenia, że dowód jakiegoś twierdzenia wymaga lub nie wymaga zastosowania aksjomatu wyboru. 수학에서 체르멜로-프렝켈 집합론(영어: Zermelo-Fraenkel set theory, 약자 ZF)은 공리적 집합론 체계의 하나이다. 일반적으로 여기에 선택 공리를 추가해 사용하며 이를 선택 공리를 추가한 체르멜로-프렝켈 집합론(영어: Zermelo–Fraenkel set theory with the axiom of choice, 약자 ZFC)이라고 한다. ZF와 ZFC는 현대 수학의 표준적인 수학기초론으로 사용된다. Zermelo-Fraenkels mängdteori med urvalsaxiomet (förkortat ZFC) är ett axiomatiskt system för mängder, formaliserat i första ordningens logik med hjälp av ett språk som består av en icke-logisk symbol som betecknar elementrelationen, . ZFC betraktas allmänt som en adekvat axiomatisk grund för i stort sett all matematik. Två intressanta delteorier till ZFC är ZF och Z. Teorin är uppkallad efter matematikerna och . En lógica y matemáticas, los axiomas de Zermelo-Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de elección (axiom of choice), como ZFC. Na matemática, a teoria dos conjuntos de Zermelo-Fraenkel com o axioma da escolha, nomeada em homenagem aos matemáticos Ernst Zermelo e Abraham Fraenkel e comumente abreviada como ZFC, é um dos muitos sistemas axiomáticos que foram propostos no início do século XX para promover uma teoria dos conjuntos sem os paradoxos da teoria ingênua dos conjuntos, como o paradoxo de Russell. Especificamente, a ZFC não permite o axioma da compreensão. Atualmente, a ZFC é a forma padrão da teoria axiomática dos conjuntos, sendo o fundamento matemático mais comum.A ZFC deve formalizar uma única noção primitiva de um bem-fundado, para que cada indivíduo no domínio de discurso seja um conjunto. Desta forma, os axiomas da ZFC se referem apenas a conjuntos, e não urelementos (elementos de conjuntos que não s In matematica, e in particolare in logica matematica, la teoria degli insiemi di Zermelo-Fraenkel comprende gli assiomi standard della teoria assiomatica degli insiemi su cui, insieme con l'assioma di scelta, si basa tutta la matematica ordinaria secondo formulazioni moderne. Sono indicati come assiomi Zermelo–Fraenkel della teoria degli insiemi o sistema di assiomi di Zermelo-Fraenkel, e abbreviati con ZF. Теорія множин Цермело — Френкеля з аксіомою вибору (позначається ZFC) — найпоширеніша аксіоматика теорії множин, і, через це, найпоширеніша . ZFC містить єдине примітивне онтологічне поняття — множина, та єдине онтологічне припущення, що всі об'єкти в досліджуваному просторі (наприклад, всі математичні об'єкти) є множинами. Вводиться єдине бінарне відношення — приналежність до множини; позначає що множина є елементом множини , та записується як . Die Zermelo-Fraenkel-Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo-Fraenkel-Mengenlehre ohne Auswahlaxiom wird durch ZF abgekürzt, mit Auswahlaxiom durch ZFC (wobei das C für das engl. Wort choice, also Auswahl oder Wahl steht).
dcterms:subject
dbc:Systems_of_set_theory dbc:Z_notation dbc:Foundations_of_mathematics
dbo:wikiPageID
152214
dbo:wikiPageRevisionID
1123869362
dbo:wikiPageWikiLink
dbr:Many-sorted_first-order_logic dbr:Solomon_Feferman dbr:Burali-Forti_paradox dbr:Fundamenta_Mathematicae dbr:Axiom_of_the_empty_set dbr:Russell's_paradox dbr:Axiom_of_the_power_set dbr:Thoralf_Skolem dbr:Forcing_(mathematics) dbr:Power_set dbr:Cardinal_number dbr:Abraham_Fraenkel dbr:Algebra_of_sets dbr:First_order_logic dbr:Well-founded dbr:Pergamon_Press dbr:Peano_arithmetic dbr:Georg_Cantor dbr:Second-order_arithmetic dbr:Finite_set dbr:Diamondsuit dbr:Image_(mathematics) dbr:Linear_order dbr:Constructible_universe dbr:Reverse_mathematics dbr:Category_theory dbr:Uniqueness_quantification dbr:Equality_(mathematics) dbr:Mizar_system dbr:Metamath dbr:Congruence_modulo_n dbr:Skolem dbr:Rank_(set_theory) dbr:Axiomatic_system dbr:New_Foundations dbc:Systems_of_set_theory dbr:Axiom_schema_of_replacement dbr:Strongly_inaccessible_cardinal dbr:Ernst_Zermelo dbr:Large_cardinal_axiom dbr:Stanford_Encyclopedia_of_Philosophy dbr:Foundations_of_mathematics dbr:Gödel's_incompleteness_theorem dbr:Class_(set_theory) dbr:Natural_numbers dbr:Whitehead_problem n23:entity dbr:Zermelo_set_theory dbr:Axiomatic_set_theory dbr:Subset dbr:Axiomatic_set_theories dbr:Axiom_schema_of_specification dbr:Springer_Science+Business_Media dbr:Well-founded_set dbr:Independence_(mathematical_logic) dbr:Thomas_Jech dbr:Conservative_extension dbr:A_K_Peters dbr:Gödel's_second_incompleteness_theorem dbr:Cantor's_paradox dbr:Martin's_axiom dbr:Harvard_University_Press dbr:Constructive_set_theory dbr:General_set_theory dbr:North-Holland_Publishing_Company dbr:Signature_(mathematical_logic) dbr:Morse–Kelley_set_theory dbr:Theorem dbr:Consistency_proof dbr:Von_Neumann_ordinal dbr:Mathematical_object dbr:Von_Neumann–Bernays–Gödel_set_theory dbr:The_cumulative_hierarchy dbr:Well-formed_formula dbr:Subtheory dbr:Continuum_hypothesis dbr:Axiom_of_regularity dbr:Axiom_schema dbr:Grothendieck_universe dbr:Axiom_of_power_set dbr:Infinite_set dbr:Axiom_of_global_choice dbr:Axiom_of_infinity dbr:Axiom_of_pairing dbr:Axiom_of_empty_set dbr:Range_of_a_function dbr:Axiom_of_determinacy dbr:Axiom_of_choice dbr:Axiom_of_constructibility dbr:Generalized_Continuum_Hypothesis dbr:Suslin's_problem dbr:Axiom dbr:Universe_(mathematics) dbr:Paradoxes_of_set_theory dbr:Large_cardinals dbr:Set_theory dbr:Urelement dbr:Theory_of_sets dbr:Metamathematics dbr:Elsevier dbr:Universe_of_discourse dbr:Inaccessible_cardinal dbr:Domain_of_discourse dbr:Constructive_mathematics dbr:Projective_determinacy dbr:Inner_model dbr:Empty_set dbr:Set_membership dbc:Z_notation dbr:Free_logic dbr:Internal_set_theory dbr:Definitional_extension dbc:Foundations_of_mathematics dbr:Pure_set dbr:Quanta_Magazine dbr:Logical_independence dbr:Tarski–Grothendieck_set_theory dbr:First-order_logic dbr:Set_builder_notation dbr:Zermelo dbr:Domain_of_a_function dbr:Disjoint_sets dbr:Mathematische_Annalen dbr:Set_(mathematics) dbr:Von_Neumann_universe dbr:List_of_statements_independent_of_ZFC dbr:Proper_class dbr:Wellordering dbr:Springer-Verlag dbr:Model_theory dbr:John_von_Neumann dbr:Free_variable dbr:Robinson_arithmetic dbr:Ordinal_number dbr:Universal_set dbr:Kurepa_tree dbr:Moore_space_(topology) dbr:Union_(set_theory) dbr:Choice_function dbr:Consistency dbr:Richard_Dedekind dbr:Multiverse_(set_theory) dbr:Naive_set_theory dbr:Cambridge_University_Press dbr:List_of_statements_undecidable_in_ZFC dbr:Hereditary_set dbr:Binary_relation dbr:Atomic_formula dbr:Function_(mathematics) dbr:Unrestricted_comprehension dbr:Saunders_Mac_Lane
dbo:wikiPageExternalLink
n11:theoryofsetstran00abia n14:to-settle-infinity-question-a-new-law-of-mathematics-20131126 n11:settheoryitslogi0000quin_j8m3 n11:axiomaticsettheo0000bern n11:handbookofmathem0090unse n26:%23AxiZFC n26:ZF.html n27:books%3Fid=tTEaMFvzhDAC&q=abbreviated+as+zfc+where+c+stands+for+the+axiom+of+choice&pg=PA4 n11:settheoryintrodu0000kune n34:1235417011 n35:mmset.html%23staxioms n34:1235417007 n27:books%3Fid=NZVb54INnywC&pg=PA62 n35:axsep.html n41:index.php%3Fid=11&PPN=PPN235181684_0065&DMDID=DMDLOG_0018&L=1 n11:introductiontoax00take
owl:sameAs
dbpedia-als:Zermelo-Fraenkel-Mengenlehre dbpedia-ro:Sistemul_axiomatic_Zermelo-Fraenkel dbpedia-sv:Zermelo–Fraenkels_mängdteori dbpedia-fr:Théorie_des_ensembles_de_Zermelo-Fraenkel dbpedia-ja:ツェルメロ=フレンケル集合論 dbpedia-cy:Damcaniaeth_setiau_Zermelo–Fraenkel dbpedia-es:Axiomas_de_Zermelo-Fraenkel dbpedia-la:Axiomata_Zermelo-Fraenkel wikidata:Q191849 dbpedia-it:Teoria_degli_insiemi_di_Zermelo-Fraenkel dbpedia-ru:Система_Цермело_—_Френкеля dbpedia-hr:Zermelo–Fraenkelova_teorija_skupova dbpedia-vi:Lý_thuyết_tập_hợp_Zermelo–Fraenkel dbpedia-tr:Zermelo-Fraenkel_küme_teorisi dbpedia-ar:نظرية_المجموعات_حسب_تسيرميلو-فرانكل dbpedia-zh:策梅洛-弗兰克尔集合论 dbpedia-cs:Zermelova–Fraenkelova_teorie_množin n38:qfY2 dbpedia-simple:Zermelo–Fraenkel_set_theory dbpedia-de:Zermelo-Fraenkel-Mengenlehre dbpedia-da:Zermelo-Fraenkels_aksiomer n44:Zermelo-Frenkelio_aibių_teorija freebase:m.013tp0 dbpedia-nl:Zermelo-Fraenkel-verzamelingenleer dbpedia-pl:Aksjomaty_Zermela-Fraenkla dbpedia-et:Zermelo-Fraenkeli_aksiomaatika dbpedia-pt:Axiomas_de_Zermelo-Fraenkel dbpedia-sr:Цермело-Френкел_теорија_скупова dbpedia-ca:ZFC dbpedia-ko:체르멜로-프렝켈_집합론 dbpedia-uk:Теорія_множин_Цермело_—_Френкеля
dbp:wikiPageUsesTemplate
dbt:Cite_book dbt:Main dbt:Vague dbt:Harvtxt dbt:Use_dmy_dates dbt:Harvnb dbt:TOC_left dbt:Mset dbt:Mvar dbt:Further dbt:Refbegin dbt:Refend dbt:More_citations_needed dbt:Reflist dbt:Definition_needed dbt:Redirect dbt:Mathematical_logic dbt:Set_theory dbt:MathWorld dbt:Not_a_typo dbt:Short_description dbt:Section_link dbt:Clear dbt:Clarification_needed dbt:Sfn dbt:Example_needed dbt:Cite_journal dbt:Cite_magazine dbt:Springer
dbp:id
Zermelo-FraenkelSetTheory p/z130100
dbp:title
Zermelo-Fraenkel Set Theory ZFC
dbo:abstract
En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du XIXe siècle par Georg Cantor. L'axiomatisation a été élaborée au début du XXe siècle par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem. Cette axiomatisation échappe aux paradoxes d'une théorie trop naïve des ensembles, comme le paradoxe de Russell, en écartant le schéma de compréhension non restreint (le fait que toute propriété puisse définir un ensemble, celui des objets ayant cette propriété) pour n'en conserver que certains cas particuliers utiles. De ce fait il existe des classes, des collections d’objets mathématiques définies par une propriété partagée par tous leurs membres, qui ne sont pas des ensembles. Dans la théorie ZF et ses extensions, ces classes dites classes propres ne correspondent pas à des objets de la théorie et ne peuvent être traitées qu'indirectement, à la différence de la très voisine théorie des classes de von Neumann-Bernays-Gödel (NBG). En raison de son statut particulier, on considère en général que l'axiome du choix ne fait pas partie de la définition de ZF et on note ZFC la théorie obtenue en ajoutant celui-ci. Les mathématiques usuelles peuvent être théoriquement développées entièrement dans le cadre de la théorie ZFC, éventuellement en ajoutant des axiomes, comme les axiomes de grands cardinaux, pour certains développements (ceux de la théorie des catégories par exemple). En ce sens il s'agit d'une théorie des fondements des mathématiques. En 1963 Paul Cohen utilise la théorie ZFC pour répondre à la question posée par Cantor de l'hypothèse du continu, en montrant qu'elle n'était pas conséquence des axiomes de cette théorie, et que l'axiome du choix n'était pas conséquence de la théorie ZF. La méthode qu'il développe, le forcing, est à l'origine de nombreux développements de la théorie des ensembles. La très grande majorité des travaux des théoriciens des ensembles depuis au moins cette époque se situent dans le cadre de la théorie ZF, de ses extensions, ou parfois de ses restrictions. La constructibilité, une méthode développée par Kurt Gödel en 1936 dans le cadre de la théorie NBG pour montrer que l'hypothèse du continu et l'axiome du choix n'étaient pas en contradiction avec les autres axiomes de la théorie des ensembles, s'adapte immédiatement à la théorie ZF. * Ernst Zermelo c. 1900 * Adolf Abraham Halevi Fraenkel Теорія множин Цермело — Френкеля з аксіомою вибору (позначається ZFC) — найпоширеніша аксіоматика теорії множин, і, через це, найпоширеніша . ZFC містить єдине примітивне онтологічне поняття — множина, та єдине онтологічне припущення, що всі об'єкти в досліджуваному просторі (наприклад, всі математичні об'єкти) є множинами. Вводиться єдине бінарне відношення — приналежність до множини; позначає що множина є елементом множини , та записується як . ZFC є теорією першого порядку; в ZFC містяться аксіоми, в яких використовується логіка першого порядку. Ці аксіоми описують: порівняння, існування, побудову та впорядкування множин. 策梅洛-弗兰克尔集合论(英語:Zermelo-Fraenkel Set Theory),含选择公理時常简写为ZFC,是在数学基础中最常用形式的公理化集合论,不含選擇公理的則簡寫為ZF。它是二十世纪早期为了建构一个不会导致类似罗素悖论的矛盾的集合理论所提出的一个公理系统。 في نظرية المجموعات، نظرية المجموعات حسب تسيرميلوءفراينكل (بالإنجليزية: Zermelo–Fraenkel set theory)‏ هي نظرية طورها عالما الرياضيات إرنست تسيرميلو وابراهام فرانكل في بداية القرن العشرين، من أجل إعطاء نظرية للمجموعات خالية من التناقضات و المفارقات، مفارقة راسل مثالا. Aksjomaty Zermela-Fraenkla, aksjomatyka Zermela-Fraenkla – układ aksjomatów teorii mnogości zaproponowany przez Ernsta Zermela w 1904 roku i później uzupełniony przez Abrahama Fraenkla. Tym, co w istocie Fraenkel dodał do teorii Zermela, były funkcje. Dla aksjomatyki Zermela-Fraenkla stosuje się często wygodną symbolikę ZF. Ze względu na specyfikę jednego z jej aksjomatów zwanego aksjomatem wyboru, stosuje się także obok ZF oznaczenie ZFC dla zaznaczenia, że dowód jakiegoś twierdzenia wymaga lub nie wymaga zastosowania aksjomatu wyboru. In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing urelements (elements of sets that are not themselves sets). Furthermore, proper classes (collections of mathematical objects defined by a property shared by their members where the collections are too big to be sets) can only be treated indirectly. Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets. For example, the axiom of pairing says that given any two sets and there is a new set containing exactly and . Other axioms describe properties of set membership. A goal of the axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann universe (also known as the cumulative hierarchy). Formally, ZFC is a one-sorted theory in first-order logic. The signature has equality and a single primitive binary relation, intended to formalize set membership, which is usually denoted . The formula means that the set is a member of the set (which is also read, " is an element of " or " is in "). The metamathematics of Zermelo–Fraenkel set theory has been extensively studied. Landmark results in this area established the logical independence of the axiom of choice from the remaining Zermelo-Fraenkel axioms (see Axiom of choice § Independence) and of the continuum hypothesis from ZFC. The consistency of a theory such as ZFC cannot be proved within the theory itself, as shown by Gödel's second incompleteness theorem. Na matemática, a teoria dos conjuntos de Zermelo-Fraenkel com o axioma da escolha, nomeada em homenagem aos matemáticos Ernst Zermelo e Abraham Fraenkel e comumente abreviada como ZFC, é um dos muitos sistemas axiomáticos que foram propostos no início do século XX para promover uma teoria dos conjuntos sem os paradoxos da teoria ingênua dos conjuntos, como o paradoxo de Russell. Especificamente, a ZFC não permite o axioma da compreensão. Atualmente, a ZFC é a forma padrão da teoria axiomática dos conjuntos, sendo o fundamento matemático mais comum.A ZFC deve formalizar uma única noção primitiva de um bem-fundado, para que cada indivíduo no domínio de discurso seja um conjunto. Desta forma, os axiomas da ZFC se referem apenas a conjuntos, e não urelementos (elementos de conjuntos que não são conjuntos) ou classes (coleções de objetos matemáticos definidos por uma propriedade em comum de seus membros). Os axiomas da ZFC previnem seus modelos de possuírem urelementos, e classes próprias só podem ser tratadas indiretamente.Formalmente, a ZFC é uma teoria de estruturas de lógica de primeira ordem. A assinatura possui igualdade e uma única relação binária primitiva, que é a pertinência, normalmente denotada por ∈. A fórmula a ∈ b significa que o conjunto a é membro do conjunto b (que também é lido como "a é elemento de b" ou "a está em b").Existem várias formulações equivalentes dos axiomas da ZFC. A maioria de seus axiomas formulam a existência de conjuntos particulares definidos a partir de outros conjuntos. Por exemplo, o axioma do par diz que, dados dois conjuntos quaisquer a e b, existe um novo conjunto {a, b} contendo exatamente a e b. Outros axiomas descrevem propriedades da pertinência de conjuntos. Um dos objetivos dos axiomas da ZFC é que cada axioma deve ser verdade se interpretado como uma afirmação sobre a coleção de todos os conjuntos do universo de von Neumann (também conhecido como a hierarquia cumulativa).A metamatemática da ZFC foi estudada extensivamente. Resultados marcantes dessa área estabeleceram a independência da hipótese do contínuo da ZFC, e o axioma da escolha dos axiomas restantes da ZFC. Zermelo-Fraenkels mängdteori med urvalsaxiomet (förkortat ZFC) är ett axiomatiskt system för mängder, formaliserat i första ordningens logik med hjälp av ett språk som består av en icke-logisk symbol som betecknar elementrelationen, . ZFC betraktas allmänt som en adekvat axiomatisk grund för i stort sett all matematik. Två intressanta delteorier till ZFC är ZF och Z. Teorin är uppkallad efter matematikerna och . In matematica, e in particolare in logica matematica, la teoria degli insiemi di Zermelo-Fraenkel comprende gli assiomi standard della teoria assiomatica degli insiemi su cui, insieme con l'assioma di scelta, si basa tutta la matematica ordinaria secondo formulazioni moderne. Sono indicati come assiomi Zermelo–Fraenkel della teoria degli insiemi o sistema di assiomi di Zermelo-Fraenkel, e abbreviati con ZF. Gli assiomi sono il risultato del lavoro di Thoralf Skolem del 1922, basato su lavori precedenti di Abraham Fraenkel nello stesso anno, che si basa sul sistema assiomatico sviluppato da Ernst Zermelo nel 1908 (teoria degli insiemi di Zermelo). Il sistema assiomatico è scritto mediante un linguaggio del primo ordine; ha un numero infinito di assiomi poiché viene usato uno schema di assiomi. Un sistema alternativo finito viene dato dagli assiomi di von Neumann-Bernays-Gödel, che aggiungono il concetto di una classe in aggiunta a quello di un insieme; esso è "equivalente" nel senso che qualsiasi teorema riguardo agli insiemi che può essere provato in un sistema può essere provato nell'altro. Si indica con la sigla ZFC il sistema formale dato dagli assiomi di Zermelo - Fraenkel con l'aggiunta dell'assioma della scelta: data una famiglia non vuota di insiemi non vuoti esiste una funzione che ad ogni insieme della famiglia fa corrispondere un suo elemento. La "C" nella sigla è l'iniziale di choice (scelta in inglese): per lo stesso motivo, l'assioma della scelta viene spesso abbreviato con le lettere AC (la "A" sta per "axiom"). En lógica y matemáticas, los axiomas de Zermelo-Fraenkel, formulados por Ernst Zermelo y Adolf Fraenkel, son un sistema axiomático concebido para formular la teoría de conjuntos. Normalmente se abrevian como ZF o en su forma más común, complementados por el axioma de elección (axiom of choice), como ZFC. Durante el siglo XIX algunos matemáticos trataron de llevar a cabo un proceso de formalización de la matemática a partir de la teoría de conjuntos. Gottlob Frege intentó culminar este proceso creando una axiomática de la teoría de conjuntos. Bertrand Russell descubrió en 1901 una contradicción, la llamada paradoja de Russell. Consecuentemente, a principios del siglo XX se realizaron varios intentos alternativos y hoy en día ZFC se ha convertido en el estándar de las teorías axiomáticas de conjuntos. La Teoria de conjunts de Zermelo-Fraenkel (ZFC) és el conjunt d'axiomes canònic de la teoria de conjunts. El seu nom es deu als matemàtics que la van desenvolupar: Ernst Zermelo i Abraham Fraenkel i la C per la inclusió de l'axioma d'elecció (Choice en anglès). Existeixen altres conjunts d'axiomes de la Teoria de Conjunts com el NBG (von Neumann, Bernays, Gödel), el TG (Tarski, Grothendieck) i el MK , però són extensions conservadora, no conservadora i pròpia, respectivament, de ZFC. Zermelova-Fraenkelova teorie množin (ZF) je nejrozšířenější axiomatickou soustavou teorie množin, která je sama o sobě nebo v některých mírných modifikacích používána jako základ pro většinu dalších odvětví matematiky včetně algebry a matematické analýzy. ZF teorie může být například doplněna o axiom výběru - v takovém případě je označována jako ZFC (písmeno C značí výběr, z anglického choice). Principem ZF je postupná konstrukce množin - objektů množinového univerza - z několika základních axiomů tak, aby vzniklá teorie byla dostatečně bohatá (je třeba umožnit existenci nespočetných množin typu reálných čísel, existenci shora neomezené řady nekonečných kardinalit), ale zároveň neumožňovala existenci množin použitých v paradoxech klasické intuitivně pojaté teorie množin (např. Russellův paradox, Buraliův-Fortiho paradox). Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году. К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC, англ. Zermelo—Fraenkel set theory with the axiom of Choice). Эта система аксиом записана на языке логики первого порядка. Существуют и другие системы; например, система аксиом фон Неймана — Бернайса — Гёделя (NBG) наряду с множествами рассматривает так называемые классы объектов, при этом она равносильна ZF в том смысле, что любая теорема о множествах (то есть не упоминающая о классах), доказуемая в одной системе, также доказуема и в другой. 수학에서 체르멜로-프렝켈 집합론(영어: Zermelo-Fraenkel set theory, 약자 ZF)은 공리적 집합론 체계의 하나이다. 일반적으로 여기에 선택 공리를 추가해 사용하며 이를 선택 공리를 추가한 체르멜로-프렝켈 집합론(영어: Zermelo–Fraenkel set theory with the axiom of choice, 약자 ZFC)이라고 한다. ZF와 ZFC는 현대 수학의 표준적인 수학기초론으로 사용된다. 集合論において、ツェルメロ=フレンケル集合論 (英: Zermelo-Fraenkel set theory) とは、ラッセルのパラドックスなどのパラドックスのない集合論を定式化するために20世紀初頭に提案された公理系である。名前は数学者のツェルメロとフレンケルにちなむ。歴史的に議論を呼んだ選択公理 (AC) を含むツェルメロ=フレンケル集合論は公理的集合論の標準形式であり、今日では最も一般的な数学の基礎となっている。選択公理を含むツェルメロ=フレンケル集合論はZFCと略される。Cは選択 (Choice) 公理を 、 ZFは選択公理を除いたツェルメロ (Zermelo)=フレンケル (Fraenkel) 集合論の公理を表す。 Die Zermelo-Fraenkel-Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo-Fraenkel-Mengenlehre ohne Auswahlaxiom wird durch ZF abgekürzt, mit Auswahlaxiom durch ZFC (wobei das C für das engl. Wort choice, also Auswahl oder Wahl steht). In de verzamelingenleer, een deelgebied van de wiskunde, is de Zermelo-Fraenkel-verzamelingenleer, vernoemd naar de wiskundigen Ernst Zermelo en Abraham Fraenkel en vaak afgekort tot ZF, een van de verschillende axiomatische systemen, die in het begin van de twintigste eeuw werden voorgesteld om een verzamelingenleer te formuleren, zonder de paradoxen van de naïeve verzamelingenleer, zoals de paradox van Russell. In het bijzonder bevat ZF niet het , maar slechts een beperkte variant ervan. Daardoor is het in ZF niet voor elke eigenschap mogelijk een verzameling te vormen van alle objecten die deze eigenschap hebben. Vandaag de dag is de Zermelo-Fraenkel-verzamelingenleer met keuzeaxioma (afgekort tot ZFC, waarbij de C voor het Engelse Choice staat) de standaardvorm van de axiomatische verzamelingenleer en als zodanig het meest gebruikelijke fundament van de wiskunde.
gold:hypernym
dbr:Systems
prov:wasDerivedFrom
wikipedia-en:Zermelo–Fraenkel_set_theory?oldid=1123869362&ns=0
dbo:wikiPageLength
42491
foaf:isPrimaryTopicOf
wikipedia-en:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Étale_cohomology
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Functional_predicate
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Kripke–Platek_set_theory_with_urelements
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Fränkel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ordered_pair
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Strong_partition_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Sunflower_(mathematics)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Measurable_function
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:1963_in_science
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_limitation_of_size
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Banach–Alaoglu_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Banach–Tarski_paradox
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Busy_beaver
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Aczel's_anti-foundation_axiom
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Category_of_sets
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Tree_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Type_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Wacław_Sierpiński
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Well-founded_relation
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Gödel's_completeness_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Gödel's_ontological_proof
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hartogs_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Harvey_Friedman
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hausdorff_maximal_principle
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Large_countable_ordinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Law_of_excluded_middle
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Law_of_trichotomy
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Lebesgue_measure
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Logicism
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Non-measurable_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Sacks_property
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Vopěnka's_principle
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Non-standard_model_of_arithmetic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Adrian_Mathias
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Alain_Badiou
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Aleph_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Alexander_Esenin-Volpin
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Alfred_Tarski
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Alternative_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Erhard_Schmidt
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ernst_Zermelo
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbp:knownFor
dbr:Zermelo–Fraenkel_set_theory
dbo:knownFor
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Fallibilism
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Filter_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Filters_in_topology
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Finite_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:First-order_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Forcing_(mathematics)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Nonstandard_analysis
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Pairing_function
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Paracompact_space
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Cardinal_characteristic_of_the_continuum
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Cardinal_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Foundations_of_mathematics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hilbert's_program
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hilbert's_second_problem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:History_of_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:History_of_mathematical_notation
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:John_Penn_Mayberry
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Kaplansky's_conjectures
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_Israeli_Ashkenazi_Jews
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_Israelis
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ultrafilter
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Quantifier_(logic)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Reductionism
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Reflection_principle
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Regular_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Group_structure_and_the_axiom_of_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Gödel's_incompleteness_theorems
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hahn–Banach_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hilbert's_problems
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Intersection_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Isabelle_(proof_assistant)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Baire_category_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:AD+
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Absoluteness
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ackermann_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:TLA+
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hereditarily_countable_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hereditary_property
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Hereditary_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Transfinite_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Woodin_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZF
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZFC
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Z_notation
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zorn's_lemma
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Remote_point
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_constructibility
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_countable_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_dependent_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_empty_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_extensionality
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_infinity
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_non-choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_pairing
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_regularity
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_of_union
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_schema_of_predicative_separation
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiom_schema_of_replacement
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axiomatic_system
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Boolean-valued_model
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Boolean_algebra_(structure)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Boolean_prime_ideal_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Borel_determinacy_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Philosophy_of_mathematics
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Class_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Grothendieck_universe
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ian_Rumfitt
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ideal_(order_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Inaccessible_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Infinity
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Kirszbraun_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Krein–Milman_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Kurt_Gödel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:König's_theorem_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ordinal_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Cantor's_isomorphism_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Carlos_Simpson
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ramsey's_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Real_number
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Certainty
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Second-order_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Set_(mathematics)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Singular_cardinals_hypothesis
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Second-order_arithmetic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Separation_axiom
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Singleton_(mathematics)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Tychonoff's_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Undecidable_problem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Von_Neumann_universe
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Nielsen–Schreier_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Universal_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Implementation_of_mathematics_in_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:List_of_unsolved_problems_in_philosophy
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Occam's_razor
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:October_1965
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Examples_of_vector_spaces
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Finite_promise_games_and_greedy_clique_sequences
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Finitism
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Finitist_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Richard's_paradox
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Naive_Set_Theory_(book)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Principle_of_explosion
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Scott–Potter_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Morse–Kelley_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Urelement
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Set-builder_notation
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Set-theoretic_definition_of_natural_numbers
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Set-theoretic_topology
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Nonstandard_calculus
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:S_(set_theory)
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Ultrafinitism
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Philosophy_of_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Teichmüller–Tukey_lemma
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:S_and_L_spaces
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Reinhardt_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Tarski's_theorem_about_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Tarski's_undefinability_theorem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Outline_of_logic
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Vitali_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Uncountable_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:The_Higher_Infinite
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Wetzel's_problem
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Worldly_cardinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Axioms_of_ZF
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Takeuti–Feferman–Buchholz_ordinal
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZFD
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel_axioms
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zfc
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZFC_Set_Theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZFC_Set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZFC_set
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZFC_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZF_axioms
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:ZF_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel-Skolem_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel_axiom
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel_axiomatization
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel_axioms
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fraenkel_framework
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Frankel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Frankel_axiom
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Frankel_axioms
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Frankel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fränkel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-Fränkel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo-frankel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo_Fraenkel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel_axiom
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel_axiomatization
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel_framework
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Fraenkel_set_theory_with_the_axiom_of_choice
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo–Frankel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
dbr:Zermelo−Fraenkel_set_theory
dbo:wikiPageWikiLink
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageRedirects
dbr:Zermelo–Fraenkel_set_theory
Subject Item
wikipedia-en:Zermelo–Fraenkel_set_theory
foaf:primaryTopic
dbr:Zermelo–Fraenkel_set_theory