In mathematics, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle.

Property Value
dbo:abstract
  • في الرياضيات، المتطابقات المثلثية أو المطابقات المثلثية أو المعادلات المثلثية هي مجموعة من المساواة تتألف من دوال مثلثية. وتعتبر المتطابقات مفيدة جدًا في تبسيط أو التحويل بين الدوال الرياضية. كما أن لها دورا كبيرا في حل المعادلات الرياضية خاصة في معكوس الدالة (كصيغة غاردان) والتكامل (كتكامل مربع جيب تمام الزاوية). هي نوع من المعادلات التي تحتوي على قيم الدوال المثلثية (جا، جتا، ظا) أو مقلوباتها بحيث تكون احدى زوايا المعادلة مجهولة وتحل هذا النوع من المعادلات كباقي المعادلات الجبرية العادية وبطرق التحليل المعروفة. (ar)
  • En matemàtiques, les identitats trigonomètriques són igualtats que impliquen funcions trigonomètriques i que són veritat per a qualsevol valor de les variables. Aquestes identitats són útils quan cal simplificar expressions en què intervenen funcions trigonomètriques. Una aplicació important és la integració de funcions no trigonomètriques: un truc habitual és començar per fer servir la integració per canvi de variable amb una funció trigonomètrica i llavors simplificar la integral resultant amb una identitat trigonomètrica. En aquest article es llisten aquestes identitats, per a la seva demostració vegeu demostració de les identitats trigonomètriques (ca)
  • Die folgende Liste enthält die meisten bekannten Formeln aus der Trigonometrie in der Ebene. Die meisten dieser Beziehungen verwenden trigonometrische Funktionen. Dabei werden die folgenden Bezeichnungen verwendet: Das Dreieck habe die Seiten , und , die Winkel , und bei den Ecken , und . Ferner seien der Umkreisradius, der Inkreisradius und , und die Ankreisradien (und zwar die Radien der Ankreise, die den Ecken , bzw. gegenüberliegen) des Dreiecks . Die Variable steht für den halben Umfang des Dreiecks : . Schließlich wird die Fläche des Dreiecks mit bezeichnet. Alle anderen Bezeichnungen werden jeweils in den entsprechenden Abschnitten, in denen sie vorkommen, erläutert. Es ist zu beachten, dass hier die Bezeichnungen für den Umkreisradius , den Inkreisradius und die drei Ankreisradien , , benutzt werden. Oft werden davon abweichend für dieselben Größen auch die Bezeichnungen , , , , verwendet. (de)
  • Una identidad trigonométrica es una igualdad que vincula dos funciones trigonométricas y es válida en el dominio común o descartando los puntos que anulan alguna función en caso de ser divisor. Son ligadas las funciones por operaciones racionales, potencias de exponente entero. En las fórmulas aún se acude a raíz cuadrada. Los ángulos se suman algebraicamente, se multiplican o se dividen por enteros positivos y luego actúan como argumento de alguna función. Nota: se define como . Lo mismo se aplica a las demás funciones trigonométricas. (es)
  • Une identité trigonométrique est une relation impliquant des fonctions trigonométriques et qui est vérifiée pour toutes les valeurs des variables intervenant dans la relation.Ces identités peuvent être utiles quand une expression comportant des fonctions trigonométriques a besoin d'être simplifiée. Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement. Elles servent beaucoup en intégration, pour intégrer des fonctions « non trigonométriques » : un procédé habituel consiste à effectuer un changement de variable en utilisant une fonction trigonométrique, et à simplifier ensuite l'intégrale obtenue avec les identités trigonométriques. Notation : si ƒ est une fonction trigonométrique, ƒ2 désigne la fonction qui à tout réel x associe le carré de ƒ(x). Par exemple : cos2 x = (cos x)2. (fr)
  • 三角関数の公式(さんかくかんすうのこうしき)は、角度に関わらず成り立つ三角関数の恒等式である。 (ja)
  • Un'identità trigonometrica è un'identità matematica che coinvolge le funzioni trigonometriche. Le identità trigonometriche sono utilizzate per semplificare molte espressioni contenenti funzioni trigonometriche (come, ad esempio, nella risoluzione di equazioni trigonometriche) e per il calcolo di molti integrali; talvolta, anche integrali di funzioni non trigonometriche possono essere calcolati mediante opportuni cambiamenti di variabile che utilizzano una funzione trigonometrica per portare a decisive semplificazioni. Notazioni: Per denotare la funzione inversa del seno talora si usa ; qui preferiamo usare e scrivere per denotare la inversa moltiplicativa della funzione seno. (it)
  • 수학에서, 삼각함수 항등식(三角函數恒等式, 영어: trigonometric identity)은 삼각함수가 나오는 항등식을 말한다. 이 공식들은 삼각함수가 나오는 복잡한 식을 간단히 정리하는 데 유용하며, 특히 치환적분에서 매우 자주 쓰이기 때문에 중요하다. 참고로 아래에서 , 등의 함수는 와 같이 정의된다. (ko)
  • De goniometrische basisfuncties zijn op diverse manieren aan elkaar gerelateerd. Dit artikel bevat lijsten met goniometrische gelijkheden of identiteiten. (nl)
  • In mathematics, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. (en)
  • Tożsamości trygonometryczne – podstawowe zależności pomiędzy funkcjami trygonometrycznymi. (pl)
  • Identidade trigonométrica é uma identidade que envolve funções trigonométricas, sendo, pois, verdadeira para todos os valores das variáveis envolvidas. Com efeito, ela é útil sempre que expressões que contêm expressões trigonométricas devam ser simplificadas, ou, doutra sorte, substituídas com o propósito de conseguir uma nova transformação, mais útil para dada aplicação. Uma importante aplicação, exemplo notável da técnica de substituição, é a integração de funções não-trigonométricas: um recurso comum envolve primeiro usar a integração por substituição com uma função trigonométrica e então simplificar a integral resultante com uma identidade trigonométrica. (pt)
  • Тригонометрические тождества — математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента (из общей области определения). (ru)
  • Тригонометричні тотожності — математичні вирази з тригонометричними функціями, що виконуються для всіх значень аргумента зі спільної області визначення. (uk)
  • 在数学中,三角恒等式是对出现的所有值都为實变量,涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25804104 (xsd:integer)
dbo:wikiPageLength
  • 104782 (xsd:integer)
dbo:wikiPageRevisionID
  • 985729932 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • في الرياضيات، المتطابقات المثلثية أو المطابقات المثلثية أو المعادلات المثلثية هي مجموعة من المساواة تتألف من دوال مثلثية. وتعتبر المتطابقات مفيدة جدًا في تبسيط أو التحويل بين الدوال الرياضية. كما أن لها دورا كبيرا في حل المعادلات الرياضية خاصة في معكوس الدالة (كصيغة غاردان) والتكامل (كتكامل مربع جيب تمام الزاوية). هي نوع من المعادلات التي تحتوي على قيم الدوال المثلثية (جا، جتا، ظا) أو مقلوباتها بحيث تكون احدى زوايا المعادلة مجهولة وتحل هذا النوع من المعادلات كباقي المعادلات الجبرية العادية وبطرق التحليل المعروفة. (ar)
  • Una identidad trigonométrica es una igualdad que vincula dos funciones trigonométricas y es válida en el dominio común o descartando los puntos que anulan alguna función en caso de ser divisor. Son ligadas las funciones por operaciones racionales, potencias de exponente entero. En las fórmulas aún se acude a raíz cuadrada. Los ángulos se suman algebraicamente, se multiplican o se dividen por enteros positivos y luego actúan como argumento de alguna función. Nota: se define como . Lo mismo se aplica a las demás funciones trigonométricas. (es)
  • 三角関数の公式(さんかくかんすうのこうしき)は、角度に関わらず成り立つ三角関数の恒等式である。 (ja)
  • 수학에서, 삼각함수 항등식(三角函數恒等式, 영어: trigonometric identity)은 삼각함수가 나오는 항등식을 말한다. 이 공식들은 삼각함수가 나오는 복잡한 식을 간단히 정리하는 데 유용하며, 특히 치환적분에서 매우 자주 쓰이기 때문에 중요하다. 참고로 아래에서 , 등의 함수는 와 같이 정의된다. (ko)
  • De goniometrische basisfuncties zijn op diverse manieren aan elkaar gerelateerd. Dit artikel bevat lijsten met goniometrische gelijkheden of identiteiten. (nl)
  • Tożsamości trygonometryczne – podstawowe zależności pomiędzy funkcjami trygonometrycznymi. (pl)
  • Identidade trigonométrica é uma identidade que envolve funções trigonométricas, sendo, pois, verdadeira para todos os valores das variáveis envolvidas. Com efeito, ela é útil sempre que expressões que contêm expressões trigonométricas devam ser simplificadas, ou, doutra sorte, substituídas com o propósito de conseguir uma nova transformação, mais útil para dada aplicação. Uma importante aplicação, exemplo notável da técnica de substituição, é a integração de funções não-trigonométricas: um recurso comum envolve primeiro usar a integração por substituição com uma função trigonométrica e então simplificar a integral resultante com uma identidade trigonométrica. (pt)
  • Тригонометрические тождества — математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента (из общей области определения). (ru)
  • Тригонометричні тотожності — математичні вирази з тригонометричними функціями, що виконуються для всіх значень аргумента зі спільної області визначення. (uk)
  • 在数学中,三角恒等式是对出现的所有值都为實变量,涉及到三角函数的等式。这些恒等式在表达式中有些三角函数需要简化的时候是很有用的。一个重要应用是非三角函数的积分:一个常用技巧是首先使用使用三角函数的代换规则,则通过三角恒等式可简化结果的积分。 (zh)
  • En matemàtiques, les identitats trigonomètriques són igualtats que impliquen funcions trigonomètriques i que són veritat per a qualsevol valor de les variables. Aquestes identitats són útils quan cal simplificar expressions en què intervenen funcions trigonomètriques. Una aplicació important és la integració de funcions no trigonomètriques: un truc habitual és començar per fer servir la integració per canvi de variable amb una funció trigonomètrica i llavors simplificar la integral resultant amb una identitat trigonomètrica. (ca)
  • Die folgende Liste enthält die meisten bekannten Formeln aus der Trigonometrie in der Ebene. Die meisten dieser Beziehungen verwenden trigonometrische Funktionen. Dabei werden die folgenden Bezeichnungen verwendet: Das Dreieck habe die Seiten , und , die Winkel , und bei den Ecken , und . Ferner seien der Umkreisradius, der Inkreisradius und , und die Ankreisradien (und zwar die Radien der Ankreise, die den Ecken , bzw. gegenüberliegen) des Dreiecks . Die Variable steht für den halben Umfang des Dreiecks : . (de)
  • In mathematics, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. (en)
  • Une identité trigonométrique est une relation impliquant des fonctions trigonométriques et qui est vérifiée pour toutes les valeurs des variables intervenant dans la relation.Ces identités peuvent être utiles quand une expression comportant des fonctions trigonométriques a besoin d'être simplifiée. Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Notation : si ƒ est une fonction trigonométrique, ƒ2 désigne la fonction qui à tout réel x associe le carré de ƒ(x). Par exemple : cos2 x = (cos x)2. (fr)
  • Un'identità trigonometrica è un'identità matematica che coinvolge le funzioni trigonometriche. Le identità trigonometriche sono utilizzate per semplificare molte espressioni contenenti funzioni trigonometriche (come, ad esempio, nella risoluzione di equazioni trigonometriche) e per il calcolo di molti integrali; talvolta, anche integrali di funzioni non trigonometriche possono essere calcolati mediante opportuni cambiamenti di variabile che utilizzano una funzione trigonometrica per portare a decisive semplificazioni. (it)
rdfs:label
  • قائمة المطابقات المثلثية (ar)
  • Llista d'identitats trigonomètriques (ca)
  • Formelsammlung Trigonometrie (de)
  • List of trigonometric identities (en)
  • Identidades y fórmulas de trigonometría (es)
  • Identité trigonométrique (fr)
  • 三角関数の公式の一覧 (ja)
  • Identità trigonometrica (it)
  • Lijst van goniometrische gelijkheden (nl)
  • 삼각함수 항등식 (ko)
  • Tożsamości trygonometryczne (pl)
  • Identidade trigonométrica (pt)
  • Тригонометрические тождества (ru)
  • Список тригонометричних тотожностей (uk)
  • 三角恒等式 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of