Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Cofinite topology
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Being a subset whose complement is a finite set
Property
Value
dbo:
description
being a subset whose complement is a finite set
(en)
dbo:
wikiPageWikiLink
dbr
:Direct_product
dbr
:Direct_sum_of_modules
dbr
:Finite_set
dbr
:Ultrafilter
dbr
:Complement_(set_theory)
dbr
:Normal_space
dbr
:Product_topology
dbr
:Dover_Publications
dbr
:Counterexamples_in_Topology
dbr
:Algebraic_curve
dbr
:Mathematics
dbr
:Open_set
dbr
:Even_number
dbr
:Regular_space
dbr
:Boolean_algebra_(structure)
dbc
:General_topology
dbr
:Discrete_space
dbr
:Subset
dbr
:Topological_space
dbr
:Field_(mathematics)
dbc
:Basic_concepts_in_infinite_set_theory
dbr
:Polynomial
dbr
:Subspace_topology
dbr
:Comparison_of_topologies
dbr
:Irreducible_component
dbr
:Empty_set
dbr
:Hyperconnected_space
dbr
:Box_topology
dbr
:T1_space
dbr
:Intersection
dbr
:Subbase
dbr
:Compact_space
dbr
:Zariski_topology
dbr
:Hausdorff_space
dbr
:Comeagre_set
dbr
:Springer-Verlag
dbr
:Maximal_filter
dbr
:Basis_(topology)
dbr
:Union_(mathematics)
dbr
:Cocountable
dbr
:Cofinite_subset
dbr
:Compact_set
dbr
:Indiscrete_topology
dbr
:R0_space
dbr
:T0_space
dbr
:Sequentially_compact
dbr
:Singleton_set
dbr
:Topological_product
dbr
:Topologically_indistinguishable
dbp:
wikiPageUsesTemplate
dbt
:Reflist
dbt
:R_to_section
dbt
:Citation
dbt
:Distinguish
dbt
:Visible_anchor
dbt
:Em
dbt
:Redirect_category_shell
dbt
:Annotated_link
dbt
:Short_description
dct:
subject
dbc
:General_topology
dbc
:Basic_concepts_in_infinite_set_theory
gold:
hypernym
dbr
:Subset
rdfs:
label
Cofinite topology
(en)
Cofiniteness
(en)
Topologia cofinita
(ca)
Topología cofinita
(es)
Kofinite Topologie
(de)
Topologia cofinita
(it)
Topologie cofinie
(fr)
쌍대 유한 집합
(ko)
補有限
(ja)
餘有限空間
(zh)
owl:
differentFrom
dbr
:Cofinality
owl:
sameAs
yago-res
:Cofinite topology
freebase
:Cofinite topology
wikidata
:Cofinite topology
dbpedia-it
:Cofinite topology
dbpedia-de
:Cofinite topology
dbpedia-fr
:Cofinite topology
dbpedia-zh
:Cofinite topology
dbpedia-ja
:Cofinite topology
dbpedia-he
:Cofinite topology
dbpedia-es
:Cofinite topology
dbpedia-fa
:Cofinite topology
dbpedia-vi
:Cofinite topology
dbpedia-ko
:Cofinite topology
dbpedia-ca
:Cofinite topology
dbpedia-sk
:Cofinite topology
dbpedia-global
:Cofinite topology
prov:
wasDerivedFrom
wikipedia-en
:Cofinite_topology?oldid=784056079&ns=0
wikipedia-en
:Cofiniteness?oldid=1269341755&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Cofinite_topology
wikipedia-en
:Cofiniteness
is
dbo:
wikiPageRedirects
of
dbr
:Cofinite_topology
dbr
:Cofinite_topology
dbr
:Cofinite
dbr
:Cofinite
dbr
:Finite-cofinite_algebra
dbr
:Finite_complement_topology
dbr
:Finite–cofinite_algebra
dbr
:Double-pointed_cofinite_topology
dbr
:Double-pointed_finite_complement_topology
dbr
:Double_pointed_finite_complement_topology
dbr
:Co-finite
dbr
:Co-finitely
dbr
:Co-finiteness
dbr
:Co-finitude
dbr
:Cofinite_set
dbr
:Cofinite_subset
dbr
:Cofinitely
dbr
:Cofinitely_many
dbr
:Cofinitude
is
dbo:
wikiPageWikiLink
of
dbr
:List_of_trigonometric_identities
dbr
:Filter_quantifier
dbr
:Piecewise_syndetic_set
dbr
:Thick_set
dbr
:Fréchet_filter
dbr
:Filter_(set_theory)
dbr
:Meagre_set
dbr
:Filters_in_topology
dbr
:Cofinite_topology
dbr
:Cofinite
dbr
:Finite-cofinite_algebra
dbr
:Finite_complement_topology
dbr
:Finite–cofinite_algebra
dbr
:Double-pointed_cofinite_topology
dbr
:Double-pointed_finite_complement_topology
dbr
:Double_pointed_finite_complement_topology
dbr
:Co-finite
dbr
:Co-finitely
dbr
:Co-finiteness
dbr
:Co-finitude
dbr
:Cofinite_set
dbr
:Cofinite_subset
dbr
:Cofinitely
dbr
:Cofinitely_many
dbr
:Cofinitude
is
owl:
differentFrom
of
dbr
:Cofinality
dbr
:Cofinal_(mathematics)
dbr
:Finite_topology
is
foaf:
primaryTopic
of
wikipedia-en
:Cofinite_topology
wikipedia-en
:Cofiniteness
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International