An Entity of Type: person, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.

Property Value
dbo:abstract
  • الاتومات الخلوي (بالإنجليزية: Cellular Automaton)‏ هي تعبير (رياضي - برمجي) يدل على مصفوفة من الخلايا يمكن أن تأخذ عدد منته من الحالات حيث كل حالة مستقبلية للخلية تتعلق بحالتها الحاضرة وبحالة الخلايا المجاورة لها. إن التحول من حالة إلى أخرى يحكم بقواعد معرفة مسبقًا. إن أحد أشهر نماذج الاتومات الخلوي هو لعبة الحياة لكونواي. في لعبة كونواي يمكن للخلية أن تمر بثلاث حالات: 1. "الولادة": إذا كانت الخلية ميتة وحولها 3 جارات أحياء (الخلايا الجارة هي 8 خلايا محيطة بالخلية المدروسة)، يتم تشغيل الخلية (واحد منطقي). 2. "النجاة": إذا كانت الخلية حية وحولها إما جارتين أو ثلاثة أحياء ، تبقى الخلية على قيد الحياة (لا تتغير حالتها). 3. "الموت": ما تبقى من حالات (بمعنى: إذا كانت الخلية حية وحولها أقل من خليتين أحياء أو أكثر من ثلاثة أحياء) نقوم بإطفاء الخلية. (ar)
  • Celulární automat (zkratka CA) je souhrnné označení pro určitý typ fyzikálního modelu reálné situace, ať již v podobě reálného přístroje či mnohem častěji počítačového algoritmu (programu). Slouží k časové i prostorové diskrétní (nespojité) (ideální modelaci) fyzikálních systémů, kde hodnoty veličin nabývají pouze diskrétních hodnot v průběhu času. Využívá se v teorii systémů, matematice a teoretické biologii. (cs)
  • Ένα κυτταρικό ή κυψελικό αυτόματο (αγγλ. cellular automaton) είναι ένα υπολογιστικό μοντέλο συστημάτων με αναδυόμενη πολυπλοκότητα. Τα κυτταρικά αυτόματα μελετώνται στη θεωρία υπολογισμού, στη φυσική, στη και αλλού. Επινοήθηκαν κατά τη δεκαετία του 1940 από τον μαθηματικό Τζον φον Νόιμαν, με σκοπό την τυπική περιγραφή των λειτουργιών του βιολογικού κυττάρου. Έγιναν περισσότερο γνωστά κατά τη δεκαετία του 1980 από τον Αμερικανό επιστήμονα υπολογιστών , θεμελιωτή του γνωστικού πεδίου της . (el)
  • Zelluläre oder auch zellulare Automaten dienen der Modellierung räumlich diskreter dynamischer Systeme, wobei die Entwicklung einzelner Zellen zum Zeitpunkt primär von den Zellzuständen in einer vorgegebenen Nachbarschaft und vom eigenen Zustand zum Zeitpunkt abhängt. (de)
  • A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton. The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete. The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four. They are, in order, automata in which patterns generally stabilize into homogeneity, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class is thought to be computationally universal, or capable of simulating a Turing machine. Special types of cellular automata are reversible, where only a single configuration leads directly to a subsequent one, and totalistic, in which the future value of individual cells only depends on the total value of a group of neighboring cells. Cellular automata can simulate a variety of real-world systems, including biological and chemical ones. (en)
  • Un autómata celular (A.C.) es un modelo matemático y computacional para un sistema dinámico que evoluciona en pasos discretos. Es adecuado para modelar sistemas naturales que puedan ser descritos como una colección masiva de objetos simples que interactúen localmente unos con otros. Son sistemas descubiertos dentro del campo de la física computacional por John von Neumann en la década de 1950. La teoría de los autómatas celulares se inicia con su precursor John von Neumann a finales de la década de 1940 con su libro Theory of Self-reproducing Automata (editado y completado por ). Aunque John von Neumann puso en práctica los AA.CC., estos fueron concebidos en los años 40 por Konrad Zuse y Stanislaw Ulam. Zuse pensó en los “espacios de cómputo” (computing spaces), como modelos discretos de sistemas físicos. Las contribuciones de Ulam vinieron al final de los 40, poco después de haber inventado con Nicholas Metropolis el Método de Montecarlo. (es)
  • Un automate cellulaire consiste en une grille régulière de « cellules » contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au cours du temps. L'état d'une cellule au temps t+1 est fonction de l'état au temps t d'un nombre fini de cellules appelé son « voisinage ». À chaque nouvelle unité de temps, les mêmes règles sont appliquées simultanément à toutes les cellules de la grille, produisant une nouvelle « génération » de cellules dépendant entièrement de la génération précédente. Étudiés en mathématiques et en informatique théorique, les automates cellulaires sont à la fois un modèle de et un modèle de calcul. Le modèle des automates cellulaires est remarquable par l'écart entre la simplicité de sa définition et la complexité que peuvent atteindre certains comportements macroscopiques : l'évolution dans le temps de l'ensemble des cellules ne se réduit pas (simplement) à la règle locale qui définit le système. À ce titre il constitue un des modèles standards dans l'étude des systèmes complexes. (fr)
  • セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 有限種類の(多くは2から数十種類の)状態を持つセル(細胞のような単位)によってセル・オートマトンは構成され、離散的な時間で個々のセルの状態が変化する。その変化は、ある時刻 t においてのセルの状態、および近傍のセルの内部状態によって、次の時刻t+1 、すなわち新たな「ジェネレーション」(世代)での各セルの状態が決定される。初期状態(時刻 t=0)は、各セルの状態を設定することで選択される。次の世代(t が1進んだ状態)は、事前に設定された「規則」(一般に何らかの数学的関数)に従って初期状態でのそのセルおよび近傍の状態から決定される。セルの状態を更新する規則は一般にどのセルでも同一であり、途中で変更されず、並んでいる全セルに同時に適用される。ただしや非同期セル・オートマトンは例外である。 その概念は1940年代、ロスアラモス国立研究所で同僚だったスタニスワフ・ウラムとジョン・フォン・ノイマンが発見した。その後細々と研究されていたが、1970年代に2次元セル・オートマトンの一種ライフゲームが登場すると注目されるようになった。1980年代にはスティーブン・ウルフラムが1次元セル・オートマトンまたはを体系的に研究し、一部の規則群がチューリング完全であることを示した。彼が2002年に出版した A New Kind of Science では、セル・オートマトンが様々な科学の領域で応用できると主張している。 (ja)
  • 세포 자동자(細胞自動子) 또는 셀룰러 오토마타(cellular automata, 단수 cellular automaton)는 계산 가능성 이론, 수학, 물리학, 복잡계, 수리생물학, 미세구조 모델링에서 다루는 이산 모형이다. 여러 개의 세포 자동자를 세포 공간, 테셀레이션 구조라고도 부른다. 세포 자동자는 규칙적인 격자 형태로 배열된 세포 또는 칸(cell)들에서 정의된다. 각 세포는 유한한 수의 "상태"를 가질 수 있는데 예를 들어 "살아 있음/죽음"이 있다. 격자는 유한한 수의 아무 차원이면 된다. 각 세포에 대하여, "이웃들"이라 부르는 세포들은 그 세포에 대한 관계로 정의하는데, 예를 들어 그 세포에 대해 모든 방향으로 한 칸씩 떨어져 있는 세포들이라는 식으로 하면 된다. 시간 t=0 일 때의 각각의 세포의 상태를 지정해놓고 이를 초기 상태라고 한다. 새로운 "세대"(시간 t가 그 다음 자연수)는 고정된 "규칙"에 의해 이전 세대로부터 만들어지는데, 규칙은 각 세포와 그 이웃들의 상태에 따라 그 세포의 새로운 상태가 지정하는 수학적인 함수이다. 일반적으로 그 규칙은 각 세포에 대해 동일하고 시간에 따라 변하지 않으며 각 세대의 모든 세포에 동시에 적용되는데, 물론 일반적이지 않은 규칙을 적용한 세포 자동자도 있다.(예: 확률론적 세포 자동자, 비동시적 세포 자동자) 1940년대에 스타니스와프 울람과 존 폰 노이만이 로스앨러모스 국립 연구소에서 함께 연구하면서 이 개념을 처음 발견했으나, 학계 밖에서 활발히 화자되기 시작한 것은 1970년대에 2차원 세포 자동자의 하나인 존 호턴 콘웨이의 라이프 게임이 소개된 이후였다. (ko)
  • Un automa cellulare (dall'inglese Cellular automaton o Cellular automata, abbrev. CA) è un modello matematico usato per descrivere l'evoluzione di sistemi complessi discreti, studiati in teoria della computazione, matematica, fisica e biologia. (it)
  • Os autómatos celulares elementares são os modelos de evolução temporal mais simples com capacidade para exibir comportamento complicado. Por isso, é muito fácil de aceitar a importância do seu estudo, quando se procura entender a complexidade que vemos surgir de uma forma transversal em todas as Ciências Naturais e Humanas. A classificação dos autómatos celulares elementares, apresentada por Stephen Wolfram, na década de 1980, foi construída a partir da simulação computacional de sistemas finitos, com condições de fronteira periódicas. Neste trabalho são consideradas outras escolhas para condições de fronteira, por reflexão e fixas, sendo estudadas as equivalências dinâmicas dos autómatos celulares finitos nesse contexto mais alargado. A partir desse estudo, mostramos que, com pouquíssimas exceções, a distribuição dos autómatos celulares elementares pelas quatro classes propostas por Wolfram vale igualmente quando se consideram condições de fronteira por reflexão e fixas. Mais interessante porém, foram os resultados obtidos no estudo de duas dessas exceções, onde se encontrou um tipo de comportamento para autómatos celulares elementares de caraterísticas não antecipadas por Wolfram na sua classificação. (pt)
  • Een cellulaire automaat (Engels: cellular automaton) is een discreet model uit de dat onder andere wordt toegepast in de wiskunde en theoretische biologie. Het model bestaat uit een één- of meer-dimensionaal raster van cellen met elk een eindig aantal toestanden. Een volgende toestand wordt door toepassing van een gegeven set regels berekend uit de huidige toestand van de cel en die van zijn directe buren. Door het herhaald toepassen van dezelfde regels ontstaan vaak spontaan patronen die nu en dan grote gelijkenis vertonen met wat in de natuur wordt aangetroffen, zoals in de groeipatronen van kristallen en in kolonies koralen. Een bekend voorbeeld van een cellulaire automaat is de Game of Life van John Conway. (nl)
  • Automat komórkowy – system składający się z pojedynczych komórek, sąsiadujących ze sobą według pewnego ustalonego wzorca. Każda z komórek może przyjąć jeden ze stanów, przy czym liczba stanów jest skończona, ale dowolnie duża. Stan komórki zmieniany jest synchronicznie zgodnie z regułami mówiącymi, w jaki sposób nowy stan komórki zależy od jej obecnego stanu i stanu jej sąsiadów. Automaty komórkowe, których struktury opisane są przez siatkę komórek oraz ich stany, przejścia i reguły tych przejść, są modelami matematycznymi. Tworzą one środowisko dla większych dyskretnych klas modeli, ponieważ wszystkie opisujące je struktury przyjmują wartości dyskretne. Każdy automat komórkowy składa się z -wymiarowej regularnej, dyskretnej siatki komórek, każda komórka jest taka sama (jest kopią poprzedniej), cała przestrzeń siatki musi być zajmowana w całości przez komórki ułożone obok siebie. Każda z nich posiada jeden stan ze skończonego zbioru stanów. Ewolucja każdej komórki przebiega według tych samych ściśle określonych reguł lokalnych (jednorodność), które zależą wyłącznie od poprzedniego stanu komórki oraz od stanów skończonej liczby komórek-sąsiadów. Ewolucja następuje w dyskretnych przedziałach czasowych, jednocześnie dla każdej komórki (równoległość). W automacie komórkowym komórka jest automatem. (pl)
  • Кле́точный автома́т — дискретная модель, изучаемая в математике, теории вычислимости, физике, теоретической биологии и микромеханике. Основой является пространство из прилегающих друг к другу клеток (ячеек), образующих решётку. Каждая клетка может находиться в одном из конечного множества состояний (например, 1 и 0). Решётка может быть любой размерности, бесконечной или конечной, для решётки с конечными размерами часто предусматривается закольцованность при достижении предела (границы). Для каждой клетки определено множество клеток, называемых окрестностью. Например, окрестность фон Неймана ранга 2 включает все клетки на расстоянии не более 2 от текущей. Устанавливаются правила перехода клеток из одного состояния в другое. Обычно правила перехода одинаковы для всех клеток. Один шаг автомата подразумевает обход всех клеток и на основе данных о текущем состоянии клетки и её окрестности определение нового состояния клетки, которое будет у неё при следующем шаге. Перед стартом автомата оговаривается начальное состояние клеток, которое может устанавливаться целенаправленно или случайным образом. Основное направление исследования клеточных автоматов — алгоритмическая разрешимость тех или иных задач. Также рассматриваются вопросы построения начальных состояний, при которых клеточный автомат будет решать заданную задачу. (ru)
  • En cellulär automat är en diskret modell i form av ett rutnät med celler, som är i ett finit tillstånd, såsom "på" eller "av". Ett sätt att simulera en tvådimensionell cellulär automat är med ett ändligt stort rutat papper, tillsammans med en uppsättning regler som cellerna ska följa. Rutorna kallas "celler" och varje cell har två möjliga tillstånd, svart eller vit. Cellens "grannar" är de närmst omkringliggande åtta rutorna som vidrör den. För en cell och dess grannar finns det 512 (= 29) möjliga mönster. För varje sådant mönster dikterar regeltabellen huruvida den mittersta cellen ska vara svart eller vit i nästa tidsintervall, kallat "generation". Conways Game of Life är en populär variant av denna modell. (sv)
  • Кліти́нний автома́т (КА) — дискретна математична модель, яка визначає сукупність та описується набором клітинок, що утворюють періодичну решітку, та заданими правилами переходу, що визначають стан клітини за теперішнім станом самої клітинки та тих її сусідів, що знаходяться від неї на певній відстані, яка не перевищує максимальну. Основний напрям дослідження клітинних автоматів — алгоритмічна розв'язність окремих задач. Також розглядаються питання побудови початкових станів, при яких клітинний автомат вирішуватиме задану задачу. Залишається відкритим, наприклад, питання про можливість побудови машини Тюринга у грі «Життя». (uk)
  • 細胞自動機(英語:Cellular automaton),又稱格狀自動機、元胞自動機,是一種,在可计算性理論、數學及理論生物學都有相關研究。它是由無限個有規律、堅硬的方格組成,每格均處於一種有限狀態。整個格網可以是任何有限維的。同時也是離散的。每格於t時的態由t-1時的一集有限格(這集叫那格的鄰域)的態決定。每一格的「鄰居」都是已被固定的。(一格可以是自己的鄰居。)每次演進時,每格均遵從同一規矩一齊演進。 就形式而言,細胞自動機有三個特徵: * 平行計算(parallel computation):每一個細胞個體都同時同步的改變 * 局部的(local):細胞的狀態變化只受周遭細胞的影響。 * 一致性的(homogeneous):所有細胞均受同樣的規則所支配 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 54342 (xsd:integer)
dbo:wikiPageLength
  • 64929 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1070458389 (xsd:integer)
dbo:wikiPageWikiLink
dbp:align
  • right (en)
dbp:caption
  • The red cells are the Moore neighborhood for the blue cell. (en)
  • The red cells are the von Neumann neighborhood for the blue cell. The range-2 "cross neighborhood" includes the pink cells as well. (en)
dbp:date
  • 2013-09-27 (xsd:date)
dbp:image
  • CA-Moore.svg (en)
  • CA-von-Neumann.svg (en)
dbp:url
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • Celulární automat (zkratka CA) je souhrnné označení pro určitý typ fyzikálního modelu reálné situace, ať již v podobě reálného přístroje či mnohem častěji počítačového algoritmu (programu). Slouží k časové i prostorové diskrétní (nespojité) (ideální modelaci) fyzikálních systémů, kde hodnoty veličin nabývají pouze diskrétních hodnot v průběhu času. Využívá se v teorii systémů, matematice a teoretické biologii. (cs)
  • Ένα κυτταρικό ή κυψελικό αυτόματο (αγγλ. cellular automaton) είναι ένα υπολογιστικό μοντέλο συστημάτων με αναδυόμενη πολυπλοκότητα. Τα κυτταρικά αυτόματα μελετώνται στη θεωρία υπολογισμού, στη φυσική, στη και αλλού. Επινοήθηκαν κατά τη δεκαετία του 1940 από τον μαθηματικό Τζον φον Νόιμαν, με σκοπό την τυπική περιγραφή των λειτουργιών του βιολογικού κυττάρου. Έγιναν περισσότερο γνωστά κατά τη δεκαετία του 1980 από τον Αμερικανό επιστήμονα υπολογιστών , θεμελιωτή του γνωστικού πεδίου της . (el)
  • Zelluläre oder auch zellulare Automaten dienen der Modellierung räumlich diskreter dynamischer Systeme, wobei die Entwicklung einzelner Zellen zum Zeitpunkt primär von den Zellzuständen in einer vorgegebenen Nachbarschaft und vom eigenen Zustand zum Zeitpunkt abhängt. (de)
  • Un automa cellulare (dall'inglese Cellular automaton o Cellular automata, abbrev. CA) è un modello matematico usato per descrivere l'evoluzione di sistemi complessi discreti, studiati in teoria della computazione, matematica, fisica e biologia. (it)
  • En cellulär automat är en diskret modell i form av ett rutnät med celler, som är i ett finit tillstånd, såsom "på" eller "av". Ett sätt att simulera en tvådimensionell cellulär automat är med ett ändligt stort rutat papper, tillsammans med en uppsättning regler som cellerna ska följa. Rutorna kallas "celler" och varje cell har två möjliga tillstånd, svart eller vit. Cellens "grannar" är de närmst omkringliggande åtta rutorna som vidrör den. För en cell och dess grannar finns det 512 (= 29) möjliga mönster. För varje sådant mönster dikterar regeltabellen huruvida den mittersta cellen ska vara svart eller vit i nästa tidsintervall, kallat "generation". Conways Game of Life är en populär variant av denna modell. (sv)
  • 細胞自動機(英語:Cellular automaton),又稱格狀自動機、元胞自動機,是一種,在可计算性理論、數學及理論生物學都有相關研究。它是由無限個有規律、堅硬的方格組成,每格均處於一種有限狀態。整個格網可以是任何有限維的。同時也是離散的。每格於t時的態由t-1時的一集有限格(這集叫那格的鄰域)的態決定。每一格的「鄰居」都是已被固定的。(一格可以是自己的鄰居。)每次演進時,每格均遵從同一規矩一齊演進。 就形式而言,細胞自動機有三個特徵: * 平行計算(parallel computation):每一個細胞個體都同時同步的改變 * 局部的(local):細胞的狀態變化只受周遭細胞的影響。 * 一致性的(homogeneous):所有細胞均受同樣的規則所支配 (zh)
  • الاتومات الخلوي (بالإنجليزية: Cellular Automaton)‏ هي تعبير (رياضي - برمجي) يدل على مصفوفة من الخلايا يمكن أن تأخذ عدد منته من الحالات حيث كل حالة مستقبلية للخلية تتعلق بحالتها الحاضرة وبحالة الخلايا المجاورة لها. إن التحول من حالة إلى أخرى يحكم بقواعد معرفة مسبقًا. إن أحد أشهر نماذج الاتومات الخلوي هو لعبة الحياة لكونواي. في لعبة كونواي يمكن للخلية أن تمر بثلاث حالات: 1. "الولادة": إذا كانت الخلية ميتة وحولها 3 جارات أحياء (الخلايا الجارة هي 8 خلايا محيطة بالخلية المدروسة)، يتم تشغيل الخلية (واحد منطقي). (ar)
  • A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. (en)
  • Un autómata celular (A.C.) es un modelo matemático y computacional para un sistema dinámico que evoluciona en pasos discretos. Es adecuado para modelar sistemas naturales que puedan ser descritos como una colección masiva de objetos simples que interactúen localmente unos con otros. Son sistemas descubiertos dentro del campo de la física computacional por John von Neumann en la década de 1950. La teoría de los autómatas celulares se inicia con su precursor John von Neumann a finales de la década de 1940 con su libro Theory of Self-reproducing Automata (editado y completado por ). (es)
  • Un automate cellulaire consiste en une grille régulière de « cellules » contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au cours du temps. L'état d'une cellule au temps t+1 est fonction de l'état au temps t d'un nombre fini de cellules appelé son « voisinage ». À chaque nouvelle unité de temps, les mêmes règles sont appliquées simultanément à toutes les cellules de la grille, produisant une nouvelle « génération » de cellules dépendant entièrement de la génération précédente. (fr)
  • 세포 자동자(細胞自動子) 또는 셀룰러 오토마타(cellular automata, 단수 cellular automaton)는 계산 가능성 이론, 수학, 물리학, 복잡계, 수리생물학, 미세구조 모델링에서 다루는 이산 모형이다. 여러 개의 세포 자동자를 세포 공간, 테셀레이션 구조라고도 부른다. 세포 자동자는 규칙적인 격자 형태로 배열된 세포 또는 칸(cell)들에서 정의된다. 각 세포는 유한한 수의 "상태"를 가질 수 있는데 예를 들어 "살아 있음/죽음"이 있다. 격자는 유한한 수의 아무 차원이면 된다. 각 세포에 대하여, "이웃들"이라 부르는 세포들은 그 세포에 대한 관계로 정의하는데, 예를 들어 그 세포에 대해 모든 방향으로 한 칸씩 떨어져 있는 세포들이라는 식으로 하면 된다. 시간 t=0 일 때의 각각의 세포의 상태를 지정해놓고 이를 초기 상태라고 한다. 새로운 "세대"(시간 t가 그 다음 자연수)는 고정된 "규칙"에 의해 이전 세대로부터 만들어지는데, 규칙은 각 세포와 그 이웃들의 상태에 따라 그 세포의 새로운 상태가 지정하는 수학적인 함수이다. 일반적으로 그 규칙은 각 세포에 대해 동일하고 시간에 따라 변하지 않으며 각 세대의 모든 세포에 동시에 적용되는데, 물론 일반적이지 않은 규칙을 적용한 세포 자동자도 있다.(예: 확률론적 세포 자동자, 비동시적 세포 자동자) (ko)
  • セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 (ja)
  • Een cellulaire automaat (Engels: cellular automaton) is een discreet model uit de dat onder andere wordt toegepast in de wiskunde en theoretische biologie. Het model bestaat uit een één- of meer-dimensionaal raster van cellen met elk een eindig aantal toestanden. Een volgende toestand wordt door toepassing van een gegeven set regels berekend uit de huidige toestand van de cel en die van zijn directe buren. Door het herhaald toepassen van dezelfde regels ontstaan vaak spontaan patronen die nu en dan grote gelijkenis vertonen met wat in de natuur wordt aangetroffen, zoals in de groeipatronen van kristallen en in kolonies koralen. (nl)
  • Automat komórkowy – system składający się z pojedynczych komórek, sąsiadujących ze sobą według pewnego ustalonego wzorca. Każda z komórek może przyjąć jeden ze stanów, przy czym liczba stanów jest skończona, ale dowolnie duża. Stan komórki zmieniany jest synchronicznie zgodnie z regułami mówiącymi, w jaki sposób nowy stan komórki zależy od jej obecnego stanu i stanu jej sąsiadów. (pl)
  • Os autómatos celulares elementares são os modelos de evolução temporal mais simples com capacidade para exibir comportamento complicado. Por isso, é muito fácil de aceitar a importância do seu estudo, quando se procura entender a complexidade que vemos surgir de uma forma transversal em todas as Ciências Naturais e Humanas. A classificação dos autómatos celulares elementares, apresentada por Stephen Wolfram, na década de 1980, foi construída a partir da simulação computacional de sistemas finitos, com condições de fronteira periódicas. Neste trabalho são consideradas outras escolhas para condições de fronteira, por reflexão e fixas, sendo estudadas as equivalências dinâmicas dos autómatos celulares finitos nesse contexto mais alargado. A partir desse estudo, mostramos que, com pouquíssimas (pt)
  • Кліти́нний автома́т (КА) — дискретна математична модель, яка визначає сукупність та описується набором клітинок, що утворюють періодичну решітку, та заданими правилами переходу, що визначають стан клітини за теперішнім станом самої клітинки та тих її сусідів, що знаходяться від неї на певній відстані, яка не перевищує максимальну. (uk)
  • Кле́точный автома́т — дискретная модель, изучаемая в математике, теории вычислимости, физике, теоретической биологии и микромеханике. Основой является пространство из прилегающих друг к другу клеток (ячеек), образующих решётку. Каждая клетка может находиться в одном из конечного множества состояний (например, 1 и 0). Решётка может быть любой размерности, бесконечной или конечной, для решётки с конечными размерами часто предусматривается закольцованность при достижении предела (границы). Для каждой клетки определено множество клеток, называемых окрестностью. Например, окрестность фон Неймана ранга 2 включает все клетки на расстоянии не более 2 от текущей. Устанавливаются правила перехода клеток из одного состояния в другое. Обычно правила перехода одинаковы для всех клеток. Один шаг автомат (ru)
rdfs:label
  • أتمتة خلوية (ar)
  • Celulární automat (cs)
  • Autòmat cel·lular (ca)
  • Κυτταρικό αυτόματο (el)
  • Zellulärer Automat (de)
  • Cellular automaton (en)
  • Autómata celular (es)
  • Automate cellulaire (fr)
  • セル・オートマトン (ja)
  • Automa cellulare (it)
  • 세포 자동자 (ko)
  • Automat komórkowy (pl)
  • Cellulaire automaat (nl)
  • Autómato celular (pt)
  • Клітинний автомат (uk)
  • Клеточный автомат (ru)
  • Cellulär automat (sv)
  • 細胞自動機 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:data of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License