An Entity of Type: PhysicalEntity100001930, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

Property Value
dbo:abstract
  • متجه لابلاس رنج لنز (بالإنجليزية: Laplace–Runge–Lenz vector)‏ واختصاره متجه LRL في ميكانيكا كلاسيكية، هو متجه يُستخدم لتوضيح شكل و هيئة مدار جسم فلكي حول جسم آخر، كدوران كوكب حول نجم. لجسمان متجاوبان مع جاذبية نيوتن، متجه LRL هو ، بمعنى أنه ثابت مهما تم حسابه على أي مكان في المدار. بِوَجْهِ العُمُوم، متجه لابلاس-رنج-لنز محفوظ في كل المسائل التي تخص تجاوب جسمين مع التي تختلف باختلاف التربيع العكسي للمسافة بينهما، تُسمى هذه المسائل بمسائل كبلر. ذرة الهيدروجين هي مسألة من مسائل كبلر، بسبب إنها تشمل جُسيمات تتجاوب مع قانون كولوم لكهروستاتيكا، قوة عكسية مُربعة أخرى. هذا المتجه مهم في لأول استنتاج في مجال ميكانيكا الكم لطيف ذرة الهيدروجين، قبل استحداث معادلة شرودنغر. لكن هذه الطريقة لم تُعد تُستخدم اليوم بكثرة. في الميكانيكا الكلاسيكية وميكانيكا الكم، الكميات المحفوظة عموماً ترتبط بتماثل النظام، متجه LRL يرتبط بتماثل غير معتاد؛ مسألة كبل رياضياً تكافأ لجسيم يتحرك بحرية علي سطح رباعي أبعاد الكرة. وبالتالي النظام بالكامل متماثل تحت دورانات مُعينة لفراغ رباعي الأبعاد. هذا التماثل نتيجة خاصيتان من خواص : متجه السرعة دائماً يتحرك في دائرة مثالية، وجميع سرعات هذه الدوائر تتقابل في نفس النقطتان. سُمي متجه لابلاس- رنج- لنز بعد بيير لابلاس، ، . يُعرف أيضاً باسم متجه لابلاس، متجه رنج، ومتجه لنز. من سخرية القدر لم يتم اكتشاف هذا المتجه عن طريق هؤلاء العلماء. هذا المتجه أُعيد اكتشافه أكثر من مرة، و هو أيضاً متكافأ مع متجهة الشذوذ لميكانيكا سماوية. تم تعريف تعميمات مختلفة لمتجه LRL، التي تدمج تأثيرات النسبية الخاصة، مجال كهرومغناطيسي، وأنواع مختلفة من قوى مركزية. (ar)
  • Laplaceův-Rungeův-Lenzův vektor někdy též LRL vektor, je vektor popisující tvar a směr orbity jednoho tělesa kolem jiného. Je konstantním vektorem v případě pohybu v . Máme-li systém popsaný hamiltoniánem , pak je LRL vektor definován jako: LRL vektor společně s energií a momentem hybnosti představuje integrál pohybu pro pohyb v Newtonově potenciálu. Velikosti všech těchto integrálů pohybu jednoznačně určují trajektorii. Protože je vždy kolmý na , jsou velikosti těchto integrálů určeny 6 nezávislými čísly. Trajektorii stejně tak určuje poloha a hybnost v určitém čase, což je taktéž 6 nezávislých hodnot. (cs)
  • El vector de Runge-Lenz (o vector de Laplace-Runge-Lenz ) és una constant de moviment del problema dels dos cossos en interacció gravitatòria mútua. L'existència d'aquesta integral de moviment és una de les formes més simples de provar que les trajectòries planetàries en aquest cas són còniques. (ca)
  • Στην κλασική μηχανική, το διάνυσμα Λαπλάς-Ραντζ-Λεντς (ή απλά το διάνυσμα LRL) είναι ένα διάνυσμα που χρησιμοποιείται κυρίως για να περιγράψει το σχήμα και τον προσανατολισμό της τροχιάς ενός αστρονομικού σώματος γύρω από ένα άλλο, όπως ένας πλανήτης περιστρέφεται γύρω από ένα αστέρι. Για δύο σώματα που αλληλεπιδρούν με νευτώνεια βαρύτητα, το LRL διάνυσμα είναι μια , πράγμα που σημαίνει ότι είναι το ίδιο χωρίς να έχει σημασία που υπολογίζεται στην τροχιά, ισοδύναμα, το LRL διάνυσμα λέγεται ότι πρέπει να διατηρηθεί. Γενικότερα, το LRL διάνυσμα διατηρείται σε όλα τα προβλήματα στα οποία αλληλεπιδρούν δύο σώματα ωθούμενα από μια κεντρική δύναμη που μεταβάλλεται ως το αντίστροφο τετράγωνο της απόστασης μεταξύ τους. Τέτοια προβλήματα ονομάζονται . Το άτομο του υδρογόνου είναι ένα πρόβλημα Κέπλερ, δεδομένου ότι περιλαμβάνει δύο φορτισμένα σωματίδια που αλληλεπιδρούν σύμφωνα με το νόμο του Κουλόμπ της ηλεκτροστατικής, μια άλλη κεντρική δύναμη του αντίστροφου τετράγωνου. Το διάνυσμα LRL ήταν απαραίτητο στην πρώτη κβαντική μηχανική παράγωγη του φάσματος του ατόμου του υδρογόνου, πριν από την ανάπτυξη της εξίσωσης Σρέντινγκερ. Ωστόσο, αυτή η προσέγγιση χρησιμοποιείται σπάνια σήμερα. Στην κλασσική και την κβαντική μηχανική, συντηρημένες ποσότητες αντιστοιχούν σε μια συμμετρία του συστήματος. Η διατήρηση του διανύσματος LRL αντιστοιχεί σε μια ασυνήθιστη συμμετρία, το πρόβλημα Κέπλερ είναι μαθηματικά ισοδύναμο με ένα σωματίδιο που κινείται ελεύθερα επί της επιφάνειας μίας τεσσάρων διαστάσεων (υπερ-) σφαίρα, επομένως όλο το πρόβλημα είναι συμμετρική υπό συγκεκριμένες περιστροφές του χώρου των τεσσάρων διαστάσεων. έτσι ώστε όλο το πρόβλημα είναι συμμετρικό υπό ορισμένες περιστροφές του τετραδιάστατου χώρου. Αυτή η υψηλότερη συμμετρία προέρχεται από δύο ιδιότητες του προβλήματος Κέπλερ: το διάνυσμα της ταχύτητας κινείται πάντα σε έναν τέλειο κύκλο και, για μια δεδομένη συνολική ενέργεια, όλοι αυτοί οι κύκλοι του διανύσματος της ταχύτητας τέμνουν ο ένας τον άλλο στα ίδια δύο σημεία. Το Laplace-Runge-Lenz διάνυσμα πήρε το όνομά του από τους Πιέρ Σιμόν Λαπλάς, Carl Runge και Wilhelm Lenz. Είναι επίσης γνωστό ως το διάνυσμα Λαπλάς, το διάνυσμα Runge-Lenz και το διάνυσμα Lenz. Κατά ειρωνικό τρόπο, κανένας από αυτούς τους επιστήμονες δεν το ανακάλυψε. Το LRL διάνυσμα έχει ανακαλυφθεί εκ νέου αρκετές φορές και είναι επίσης ισοδύναμο με το αδιάστατο διάνυσμα εκκεντρικότητας της ουράνιας μηχανικής. Έχουν οριστεί διάφορες γενικεύσεις του LRL διανύσματος, οι οποίες ενσωματώνουν τις επιπτώσεις της ειδικής σχετικότητας, των ηλεκτρομαγνητικών πεδίων, ακόμα και διαφορετικών τύπων των κεντρικών δυνάμεων. (el)
  • Der Laplace-Runge-Lenz-Vektor (auch Runge-Lenz-Vektor, Lenzscher Vektor etc., nach Pierre-Simon Laplace, Carl Runge und Wilhelm Lenz) ist eine Erhaltungsgröße der Bewegung in einem 1/r-Potential (z. B. Coulomb-Potential, Gravitationspotential), d. h. er ist auf jedem Punkt der Bahn gleich. Er zeigt vom Brennpunkt der Bahn (Kraftzentrum) zum nächstgelegenen Bahnpunkt (Perihel bei der Erdbahn) und hat somit eine Richtung parallel zur großen Bahnachse. Sein Betrag ist mit der Exzentrizität der Bahn verknüpft. Der Laplace-Runge-Lenz-Vektor ermöglicht daher die elegante Herleitung der Bahnkurve eines Teilchens (z. B. Planet im Keplerproblem, -Teilchen gestreut an Atomkern) in diesem Kraftfeld, ohne eine einzige Bewegungsgleichung lösen zu müssen. In der klassischen Mechanik wird der Vektor hauptsächlich benutzt, um die Form und Orientierung der Umlaufbahn eines astronomischen Körpers um einen anderen zu beschreiben, etwa die Bahn eines Planeten um seinen Stern. Auch in der Quantenmechanik des Wasserstoffatoms spielt der Vektor als Laplace-Runge-Lenz- oder Laplace-Runge-Lenz-Pauli-Operator eine Rolle. (de)
  • El vector de Runge-Lenz (o vector de Laplace-Runge-Lenz) es una constante de movimiento del problema de los dos cuerpos en interacción gravitatoria mutua. La existencia de esta integral de movimiento es una de las formas más simples de probar que las trayectorias planetarias en ese caso son cónicas. (es)
  • In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems. The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by Coulomb's law of electrostatics, another inverse-square central force. The LRL vector was essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom, before the development of the Schrödinger equation. However, this approach is rarely used today. In classical and quantum mechanics, conserved quantities generally correspond to a symmetry of the system. The conservation of the LRL vector corresponds to an unusual symmetry; the Kepler problem is mathematically equivalent to a particle moving freely on the surface of a four-dimensional (hyper-)sphere, so that the whole problem is symmetric under certain rotations of the four-dimensional space. This higher symmetry results from two properties of the Kepler problem: the velocity vector always moves in a perfect circle and, for a given total energy, all such velocity circles intersect each other in the same two points. The Laplace–Runge–Lenz vector is named after Pierre-Simon de Laplace, Carl Runge and Wilhelm Lenz. It is also known as the Laplace vector, the Runge–Lenz vector and the Lenz vector. Ironically, none of those scientists discovered it. The LRL vector has been re-discovered and re-formulated several times; for example, it is equivalent to the dimensionless eccentricity vector of celestial mechanics. Various generalizations of the LRL vector have been defined, which incorporate the effects of special relativity, electromagnetic fields and even different types of central forces. (en)
  • En mécanique classique, le vecteur de Runge-Lenz ou invariant de Runge-Lenz est un vecteur utilisé principalement pour décrire la forme et l'orientation de l'orbite d'un corps astronomique autour d'un autre, comme dans le cas d'une planète autour d'une étoile. Pour deux corps en interaction gravitationnelle, le vecteur de Runge-Lenz est une constante du mouvement, ce qui signifie qu'il prend la même valeur en n'importe quel point de l'orbite ; de manière équivalente on dit que le vecteur de Runge-Lenz se conserve. Plus généralement le vecteur de Runge-Lenz est conservé pour n'importe quel problème à deux corps interagissant par le biais d'une force centrale variant comme l'inverse du carré de la distance entre eux. De tels problèmes sont appelés « problèmes de Kepler ». L'atome d'hydrogène est un problème de Kepler puisqu'il comprend deux charges en interaction électrostatique, une autre force centrale en carré inverse de la distance. Le vecteur de Runge-Lenz fut essentiel dans les premières descriptions quantiques du spectre d'émission de l'atome d'hydrogène après le développement de l'équation de Schrödinger. Cependant cette approche est aujourd'hui très peu utilisée.En mécaniques classique et quantique, les grandeurs conservées correspondent généralement à une symétrie du problème. La conservation du vecteur de Runge-Lenz est associée à une symétrie inhabituelle : le problème de Kepler est mathématiquement équivalent à une particule se déplaçant librement sur une 3-sphère, ce qui implique que le problème est symétrique pour certaines rotations dans un espace à quatre dimensions. Cette symétrie supérieure résulte de deux propriétés du problème de Kepler : le vecteur vitesse se déplace toujours dans un cercle parfait et, pour une énergie totale donnée, tous les cercles de vitesse s'interceptent en deux mêmes points. Le vecteur de Runge–Lenz est nommé d'après Carl Runge et Wilhelm Lenz. Il est également connu sous le nom de vecteur de Laplace (d'après Pierre-Simon de Laplace) bien qu'aucun de ces scientifiques ne l'ait découvert. Le vecteur de Runge-Lenz a en réalité été redécouvert plusieurs fois et il est équivalent au vecteur excentricité de la mécanique céleste. Plusieurs généralisations du vecteur de Runge-Lenz ont été définies pour tenir compte de la relativité générale, du champ électromagnétique et des différents types de forces centrales. (fr)
  • In meccanica classica, il vettore di Laplace-Runge-Lenz (o semplicemente vettore di Lenz) è un vettore utilizzato comunemente per descrivere la forma e l'orientazione dell'orbita di un corpo celeste attorno ad un altro, come nel caso della rivoluzione di un pianeta attorno al sole. Per due corpi interagenti secondo la gravità Newtoniana, il vettore di Lenz è una costante del moto, nel senso che esso, per una data orbita, conserva il suo aspetto indipendentemente dal punto o dal momento in cui esso venga calcolato; in modo equivalente, si può dire che il vettore venga “conservato” durante il moto.Più in generale, questo vettore risulta conservato in tutti i problemi in cui due corpi interagiscono mediante una forza centrale che varia secondo la legge dell'inverso del quadrato delle distanza; tali problemi sono soprannominati problemi di Keplero. L'atomo di idrogeno è un esempio di problema di questo tipo, in quanto comprende due particelle cariche interagenti attraverso la forza di Coulomb. Il vettore di Lenz rivestì un'importantissima funzione nella prima derivazione quantistica dello spettro di emissione dell'atomo di idrogeno prima dello sviluppo dell'equazione di Schrödinger. Tuttavia, questo approccio oggi è scarsamente utilizzato. In meccanica classica e quantistica, quantità conservate generalmente corrispondono a simmetrie del sistema. La conservazione del vettore di Lenz corrisponde a una simmetria alquanto inusuale: il problema di Keplero è infatti matematicamente equivalente a quello di una particella in moto libero sul confine tridimensionale di un'ipersfera,, cosicché l'intero problema risulta simmetrico rispetto certe rotazioni di questo spazio quadri-dimensionale.Questa alta simmetria è il risultato di due proprietà del problema di Keplero: il vettore velocità si muove su un cerchio perfetto e, per un'energia meccanica predisposta, tutti questi cerchi di velocità si intersecano insieme negli stessi due punti. Molte generalizzazioni del vettore di Lenz sono state elaborate con lo scopo di incorporare gli effetti della relatività speciale, campi elettromagnetici o altri tipi di forze centrali. (it)
  • 고전역학에서 라플라스-룽게-렌츠 벡터(영어: Laplace-Runge-Lenz vector, 약자 LRL 벡터)는 행성의 궤도를 계산할 때 사용할 수 있는 벡터이다. 이를 이용해서 행성의 궤도가 중력장에서 타원궤도가 됨을 보일 수 있다. 라플라스 벡터, 룽게-렌츠 벡터, 렌츠 벡터로 불리기도 한다. 하지만, 실제로는 이들이 처음 발견한 것은 아니며 여러 차례에 걸쳐 재발견되었다. (ko)
  • 物理学において、ルンゲ=レンツベクトル(英: Runge–Lenz vector)とは、ケプラー問題、すなわち逆二乗則に従う中心力の下の運動における保存量の一つ。古典力学ののケプラー問題や量子力学の水素原子モデルの問題などに現れる。空間的な回転対称性の下で保存量となる角運動量のように、他の多くの保存量が幾何学的な対称性から導かれるのとは異なり、ルンゲ=レンツベクトルを導く対称性は力学的性質に由来し、力学的対称性と呼ばれる。水素原子の束縛状態においては、量子力学的な角運動量演算子とルンゲ=レンツベクトル演算子の交換関係は4次特殊直交群SO(4)に対応するリー代数をなし、固有値問題の代数的な解法を与える。 ルンゲ=レンツベクトルという名はドイツの物理学者カール・ルンゲとに因む。1924年の前期量子論の論文において、レンツはケプラー問題の摂動にルンゲ=レンツベクトルを適用し、その引用文献として、ルンゲのベクトル解析の著作 "Vectoranalysis" を挙げた。なお、フランスの物理学者ピエール=シモン・ラプラスはルンゲやレンツに先駆けて、1799年の天体力学の著作 "Traité de mécanique céleste" の中でルンゲ=レンツベクトルの性質を論じており、ラプラス=ルンゲ=レンツベクトル(英: Laplace–Runge–Lenz vector)とも呼ばれる。但し、その発見はさらに古く、少なくとも18世紀初頭のベルヌーイ家の門弟とヨハン・ベルヌーイの結果に遡るとされる。 (ja)
  • In de mechanica is de Laplace-Runge-Lenz-vector (of afgekort de LRL-vector) een vector, die voornamelijk wordt gebruikt om de vorm en de oriëntatie van een baan van een astronomisch hemellichaam rondom een ander hemellichaam te beschrijven, bijvoorbeeld een planeet om een ster draait. Voor twee lichamen die op elkaar inwerken door middel van de Newtoniaanse zwaartekracht, is de LRL-vector een bewegingsconstante, wat betekent dat de waarde die de bewegingsconstante aanneemt hetzelfde is, ongeacht waar in de baan de bewegingsconstante wordt berekend; op gelijkwaardige wijze zegt men dat de LRL-vector wordt behouden. Meer in het algemeen wordt de LRL-vector behouden in alle problemen waarbij twee lichamen wisselwerken door middel van een centrale kracht, die met het omgekeerde kwadraat van de afstand tussen de twee lichamen varieert; dergelijke problemen worden genoemd. De Laplace-Runge-Lenz-vector is vernoemd naar Pierre-Simon Laplace, Carl Runge en Wilhelm Lenz. De vector staat ook wel bekend als de Laplace-vector, de Runge-Lenz-vector en de Lenz-vector. Ironisch genoeg heeft geen van deze drie wiskundigen de LRL-vector ontdekt. De LRL-vector is in de loop ter tijden meerdere malen herontdekt. (nl)
  • Na mecânica clássica, o vetor de Laplace-Runge-Lenz (ou simplemente vetor LRL) é um vetor geométrico utilizado principalmente para descrever o perfil e a orientação da órbita celeste de um dos corpos astrônomos sobre outros, também com um planeta rotativo sobre uma estrela. Para dois corpos interagindo sob a gravidade, o vetor LRL é uma constante de movimento, formando que é a mesma , porém não mais importante que é calculada na órbita equivalente, o vetor LRL é mencionado para estar conservado. Mais geral, este vetor é conservado em todos os problemas em que tem a integração sobre dois corpos físicos sobre uma força central que varia com o inverso do quadrado entre eles, como os problemas de Kepler. (pt)
  • У класичній механіці вектором Лапласа — Рунге — Ленца називається вектор, який використовується переважно для опису форми та орієнтації орбіти, по якій одне небесне тіло обертається навколо іншого (наприклад, орбіти, по якій планета обертається навколо зорі). У випадку з двома тілами, взаємодія яких описується законом всесвітнього тяжіння Ньютона, вектор Лапласа — Рунге — Ленца є інтегралом руху, тобто його напрямок і величина є постійними незалежно від того, в якій точці орбіти вони обчислюються; кажуть, що вектор Лапласа — Рунге — Ленца зберігається при гравітаційній взаємодії двох тіл. Це твердження можна узагальнити для будь-якої задачі з двома тілами, що взаємодіють з допомогою центральної сили, яка змінюється обернено пропорційно до квадрату відстані між ними. Така задача називається задачею Кеплера. Наприклад, такий потенціал виникає при розгляді класичних орбіт (без врахування квантування) у задачі про рух негативно зарядженого електрона, що рухається в електричному полі позитивно зарядженого ядра. Якщо вектор Лапласа — Рунге — Ленца заданий, то форма їхнього відносного руху може бути отримана з простих геометричних міркувань, з використанням законів збереження цього вектора та енергії. Згідно з принципом відповідності вектор Лапласа — Рунге — Ленца має квантовий аналог, який був використаний у першому виводі спектра атому водню, ще перед відкриттям рівняння Шредінгера. Задача Кеплера має незвичну особливість: кінець вектора імпульсу завжди рухається по колу. Через розташування цих кіл для заданої повної енергії задача Кеплера математично еквівалентна частинці, що вільно переміщується у чотиримірній сфері . За цією математичною аналогією, вектор Лапласа — Рунге — Ленца, що зберігається, еквівалентний додатковим компонентам кутового моменту в чотиримірному просторі. Вектор Лапласа — Рунге — Ленца також відомий як вектор Лапласа, вектор Рунге — Ленца і вектор Ленца, хоча жоден із цих вчених не вивів його вперше. Вектор Лапласа — Рунге — Ленца перевідкривався кілька разів. Він також еквівалентний безрозмірному вектору ексцентриситету в небесній механіці. Він так само не має ніякого загальноприйнятого позначення, хоча зазвичай використовується . Для різних узагальнень вектора Лапласа — Рунге — Ленца, які визначені нижче, використовується символ . (uk)
  • В классической механике ве́ктором Лапла́са — Ру́нге — Ле́нца называется вектор, в основном используемый для описания формы и ориентации орбиты, по которой одно небесное тело обращается вокруг другого (например, орбиты, по которой планета вращается вокруг звезды). В случае с двумя телами, взаимодействие которых описывается законом всемирного тяготения Ньютона, вектор Лапласа — Рунге — Ленца представляет собой интеграл движения, то есть его направление и величина являются постоянными независимо от того, в какой точке орбиты они вычисляются; говорят, что вектор Лапласа — Рунге — Ленца сохраняется при гравитационном взаимодействии двух тел. Это утверждение можно обобщить для любой задачи с двумя телами, взаимодействующими посредством центральной силы, которая изменяется обратно пропорционально квадрату расстояния между ними. Такая задача называется Кеплеровой задачей. Например, такой потенциал возникает при рассмотрении классических орбит (без учёта квантования) в задаче о движении отрицательно заряженного электрона, движущегося в электрическом поле положительно заряженного ядра. Если вектор Лапласа — Рунге — Ленца задан, то форма их относительного движения может быть получена из простых геометрических соображений, с использованием законов сохранения этого вектора и энергии. Согласно принципу соответствия у вектора Лапласа — Рунге — Ленца имеется квантовый аналог, который был использован в первом выводе спектра атома водорода, ещё перед открытием уравнения Шрёдингера. В задаче Кеплера имеется необычная особенность: конец вектора импульса всегда движется по кругу. Из-за расположения этих кругов для заданной полной энергии проблема Кеплера математически эквивалентна частице, свободно перемещающейся в четырёхмерной сфере . По этой математической аналогии сохраняющийся вектор Лапласа — Рунге — Ленца эквивалентен дополнительным компонентам углового момента в четырёхмерном пространстве. Вектор Лапласа — Рунге — Ленца также известен как вектор Лапласа, вектор Рунге — Ленца и вектор Ленца, хотя ни один из этих учёных не вывел его впервые. Вектор Лапласа — Рунге — Ленца открывался вновь несколько раз. Он также эквивалентен безразмерному вектору эксцентриситета в небесной механике. Точно так же для него нет никакого общепринятого обозначения, хотя обычно используется . Для различных обобщений вектора Лапласа — Рунге — Ленца, которые определены ниже, используется символ . (ru)
  • 在經典力學裏,拉普拉斯-龍格-冷次向量(簡稱為LRL向量)主要是用來描述,當一個物體環繞著另外一個物體運動時,軌道的形狀與取向。典型的例子是行星的環繞著太陽公轉。在一個物理系統裏,假若兩個物體以萬有引力相互作用,則LRL向量必定是一個運動常數,不管在軌道的任何位置,計算出來的LRL向量都一樣;也就是說,LRL向量是一個保守量。更廣義地,在克卜勒問題裏,由於兩個物體以連心力相互作用,而連心力遵守平方反比定律,所以,LRL向量是一個保守量。 氫原子是由兩個帶電粒子構成的。這兩個帶電粒子以遵守庫侖定律的靜電力互相作用.靜電力是一個標準的平方反比連心力。所以,氫原子內部的微觀運動是一個开普勒問題。在量子力學的發展初期,薛丁格還在思索他的薛丁格方程式的時候,沃夫岡·包立使用LRL向量,關鍵性地推導出氫原子的發射光譜。這結果給予物理學家很大的信心,量子力學理論是正確的。 在經典力學與量子力學裏,因為物理系統的某一種對稱性,會產生一個或多個對應的保守值。LRL向量也不例外。可是,它相對應的對稱性很特別;在數學裏,开普勒問題等價於一個粒子自由地移動於四維空間的三維球面;所以,整個問題涉及四維空間的某種旋轉對稱。 拉普拉斯-龍格-冷次向量是因皮埃爾-西蒙·拉普拉斯、卡爾·龍格與威廉·楞次而命名。它又稱為拉普拉斯向量,龍格-冷次向量,或冷次向量。有趣的是,LRL向量並不是這三位先生發現的!這向量曾經被重複地發現過好幾次。它等價於天體力學中無因次的離心率向量。發展至今,在物理學裏,有許多各種各樣的LRL向量的推廣定義;牽涉到狹義相對論,或電磁場,甚至於不同類型的連心力。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 719460 (xsd:integer)
dbo:wikiPageLength
  • 75795 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124249166 (xsd:integer)
dbo:wikiPageWikiLink
dbp:backgroundColour
  • #F9FFF7 (en)
dbp:bgcolor
  • #FAFFFB (en)
dbp:borderColour
  • #0073CF (en)
  • #0070BF (en)
dbp:cellpadding
  • 6 (xsd:integer)
dbp:indent
  • : (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • El vector de Runge-Lenz (o vector de Laplace-Runge-Lenz ) és una constant de moviment del problema dels dos cossos en interacció gravitatòria mútua. L'existència d'aquesta integral de moviment és una de les formes més simples de provar que les trajectòries planetàries en aquest cas són còniques. (ca)
  • El vector de Runge-Lenz (o vector de Laplace-Runge-Lenz) es una constante de movimiento del problema de los dos cuerpos en interacción gravitatoria mutua. La existencia de esta integral de movimiento es una de las formas más simples de probar que las trayectorias planetarias en ese caso son cónicas. (es)
  • 고전역학에서 라플라스-룽게-렌츠 벡터(영어: Laplace-Runge-Lenz vector, 약자 LRL 벡터)는 행성의 궤도를 계산할 때 사용할 수 있는 벡터이다. 이를 이용해서 행성의 궤도가 중력장에서 타원궤도가 됨을 보일 수 있다. 라플라스 벡터, 룽게-렌츠 벡터, 렌츠 벡터로 불리기도 한다. 하지만, 실제로는 이들이 처음 발견한 것은 아니며 여러 차례에 걸쳐 재발견되었다. (ko)
  • Na mecânica clássica, o vetor de Laplace-Runge-Lenz (ou simplemente vetor LRL) é um vetor geométrico utilizado principalmente para descrever o perfil e a orientação da órbita celeste de um dos corpos astrônomos sobre outros, também com um planeta rotativo sobre uma estrela. Para dois corpos interagindo sob a gravidade, o vetor LRL é uma constante de movimento, formando que é a mesma , porém não mais importante que é calculada na órbita equivalente, o vetor LRL é mencionado para estar conservado. Mais geral, este vetor é conservado em todos os problemas em que tem a integração sobre dois corpos físicos sobre uma força central que varia com o inverso do quadrado entre eles, como os problemas de Kepler. (pt)
  • متجه لابلاس رنج لنز (بالإنجليزية: Laplace–Runge–Lenz vector)‏ واختصاره متجه LRL في ميكانيكا كلاسيكية، هو متجه يُستخدم لتوضيح شكل و هيئة مدار جسم فلكي حول جسم آخر، كدوران كوكب حول نجم. لجسمان متجاوبان مع جاذبية نيوتن، متجه LRL هو ، بمعنى أنه ثابت مهما تم حسابه على أي مكان في المدار. بِوَجْهِ العُمُوم، متجه لابلاس-رنج-لنز محفوظ في كل المسائل التي تخص تجاوب جسمين مع التي تختلف باختلاف التربيع العكسي للمسافة بينهما، تُسمى هذه المسائل بمسائل كبلر. (ar)
  • Laplaceův-Rungeův-Lenzův vektor někdy též LRL vektor, je vektor popisující tvar a směr orbity jednoho tělesa kolem jiného. Je konstantním vektorem v případě pohybu v . Máme-li systém popsaný hamiltoniánem , pak je LRL vektor definován jako: LRL vektor společně s energií a momentem hybnosti představuje integrál pohybu pro pohyb v Newtonově potenciálu. (cs)
  • Στην κλασική μηχανική, το διάνυσμα Λαπλάς-Ραντζ-Λεντς (ή απλά το διάνυσμα LRL) είναι ένα διάνυσμα που χρησιμοποιείται κυρίως για να περιγράψει το σχήμα και τον προσανατολισμό της τροχιάς ενός αστρονομικού σώματος γύρω από ένα άλλο, όπως ένας πλανήτης περιστρέφεται γύρω από ένα αστέρι. Για δύο σώματα που αλληλεπιδρούν με νευτώνεια βαρύτητα, το LRL διάνυσμα είναι μια , πράγμα που σημαίνει ότι είναι το ίδιο χωρίς να έχει σημασία που υπολογίζεται στην τροχιά, ισοδύναμα, το LRL διάνυσμα λέγεται ότι πρέπει να διατηρηθεί. Γενικότερα, το LRL διάνυσμα διατηρείται σε όλα τα προβλήματα στα οποία αλληλεπιδρούν δύο σώματα ωθούμενα από μια κεντρική δύναμη που μεταβάλλεται ως το αντίστροφο τετράγωνο της απόστασης μεταξύ τους. Τέτοια προβλήματα ονομάζονται . (el)
  • Der Laplace-Runge-Lenz-Vektor (auch Runge-Lenz-Vektor, Lenzscher Vektor etc., nach Pierre-Simon Laplace, Carl Runge und Wilhelm Lenz) ist eine Erhaltungsgröße der Bewegung in einem 1/r-Potential (z. B. Coulomb-Potential, Gravitationspotential), d. h. er ist auf jedem Punkt der Bahn gleich. Er zeigt vom Brennpunkt der Bahn (Kraftzentrum) zum nächstgelegenen Bahnpunkt (Perihel bei der Erdbahn) und hat somit eine Richtung parallel zur großen Bahnachse. Sein Betrag ist mit der Exzentrizität der Bahn verknüpft. Der Laplace-Runge-Lenz-Vektor ermöglicht daher die elegante Herleitung der Bahnkurve eines Teilchens (z. B. Planet im Keplerproblem, -Teilchen gestreut an Atomkern) in diesem Kraftfeld, ohne eine einzige Bewegungsgleichung lösen zu müssen. (de)
  • In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems. (en)
  • En mécanique classique, le vecteur de Runge-Lenz ou invariant de Runge-Lenz est un vecteur utilisé principalement pour décrire la forme et l'orientation de l'orbite d'un corps astronomique autour d'un autre, comme dans le cas d'une planète autour d'une étoile. (fr)
  • In meccanica classica, il vettore di Laplace-Runge-Lenz (o semplicemente vettore di Lenz) è un vettore utilizzato comunemente per descrivere la forma e l'orientazione dell'orbita di un corpo celeste attorno ad un altro, come nel caso della rivoluzione di un pianeta attorno al sole. Molte generalizzazioni del vettore di Lenz sono state elaborate con lo scopo di incorporare gli effetti della relatività speciale, campi elettromagnetici o altri tipi di forze centrali. (it)
  • In de mechanica is de Laplace-Runge-Lenz-vector (of afgekort de LRL-vector) een vector, die voornamelijk wordt gebruikt om de vorm en de oriëntatie van een baan van een astronomisch hemellichaam rondom een ander hemellichaam te beschrijven, bijvoorbeeld een planeet om een ster draait. Voor twee lichamen die op elkaar inwerken door middel van de Newtoniaanse zwaartekracht, is de LRL-vector een bewegingsconstante, wat betekent dat de waarde die de bewegingsconstante aanneemt hetzelfde is, ongeacht waar in de baan de bewegingsconstante wordt berekend; op gelijkwaardige wijze zegt men dat de LRL-vector wordt behouden. Meer in het algemeen wordt de LRL-vector behouden in alle problemen waarbij twee lichamen wisselwerken door middel van een centrale kracht, die met het omgekeerde kwadraat van de (nl)
  • 物理学において、ルンゲ=レンツベクトル(英: Runge–Lenz vector)とは、ケプラー問題、すなわち逆二乗則に従う中心力の下の運動における保存量の一つ。古典力学ののケプラー問題や量子力学の水素原子モデルの問題などに現れる。空間的な回転対称性の下で保存量となる角運動量のように、他の多くの保存量が幾何学的な対称性から導かれるのとは異なり、ルンゲ=レンツベクトルを導く対称性は力学的性質に由来し、力学的対称性と呼ばれる。水素原子の束縛状態においては、量子力学的な角運動量演算子とルンゲ=レンツベクトル演算子の交換関係は4次特殊直交群SO(4)に対応するリー代数をなし、固有値問題の代数的な解法を与える。 (ja)
  • 在經典力學裏,拉普拉斯-龍格-冷次向量(簡稱為LRL向量)主要是用來描述,當一個物體環繞著另外一個物體運動時,軌道的形狀與取向。典型的例子是行星的環繞著太陽公轉。在一個物理系統裏,假若兩個物體以萬有引力相互作用,則LRL向量必定是一個運動常數,不管在軌道的任何位置,計算出來的LRL向量都一樣;也就是說,LRL向量是一個保守量。更廣義地,在克卜勒問題裏,由於兩個物體以連心力相互作用,而連心力遵守平方反比定律,所以,LRL向量是一個保守量。 氫原子是由兩個帶電粒子構成的。這兩個帶電粒子以遵守庫侖定律的靜電力互相作用.靜電力是一個標準的平方反比連心力。所以,氫原子內部的微觀運動是一個开普勒問題。在量子力學的發展初期,薛丁格還在思索他的薛丁格方程式的時候,沃夫岡·包立使用LRL向量,關鍵性地推導出氫原子的發射光譜。這結果給予物理學家很大的信心,量子力學理論是正確的。 在經典力學與量子力學裏,因為物理系統的某一種對稱性,會產生一個或多個對應的保守值。LRL向量也不例外。可是,它相對應的對稱性很特別;在數學裏,开普勒問題等價於一個粒子自由地移動於四維空間的三維球面;所以,整個問題涉及四維空間的某種旋轉對稱。 (zh)
  • У класичній механіці вектором Лапласа — Рунге — Ленца називається вектор, який використовується переважно для опису форми та орієнтації орбіти, по якій одне небесне тіло обертається навколо іншого (наприклад, орбіти, по якій планета обертається навколо зорі). У випадку з двома тілами, взаємодія яких описується законом всесвітнього тяжіння Ньютона, вектор Лапласа — Рунге — Ленца є інтегралом руху, тобто його напрямок і величина є постійними незалежно від того, в якій точці орбіти вони обчислюються; кажуть, що вектор Лапласа — Рунге — Ленца зберігається при гравітаційній взаємодії двох тіл. Це твердження можна узагальнити для будь-якої задачі з двома тілами, що взаємодіють з допомогою центральної сили, яка змінюється обернено пропорційно до квадрату відстані між ними. Така задача називається (uk)
  • В классической механике ве́ктором Лапла́са — Ру́нге — Ле́нца называется вектор, в основном используемый для описания формы и ориентации орбиты, по которой одно небесное тело обращается вокруг другого (например, орбиты, по которой планета вращается вокруг звезды). В случае с двумя телами, взаимодействие которых описывается законом всемирного тяготения Ньютона, вектор Лапласа — Рунге — Ленца представляет собой интеграл движения, то есть его направление и величина являются постоянными независимо от того, в какой точке орбиты они вычисляются; говорят, что вектор Лапласа — Рунге — Ленца сохраняется при гравитационном взаимодействии двух тел. Это утверждение можно обобщить для любой задачи с двумя телами, взаимодействующими посредством центральной силы, которая изменяется обратно пропорционально (ru)
rdfs:label
  • متجه لابلاس-رنج-لنز (ar)
  • Vector de Runge-Lenz (ca)
  • Laplaceův–Rungeův–Lenzův vektor (cs)
  • Laplace-Runge-Lenz-Vektor (de)
  • Διάνυσμα Λαπλάς–Ραντζ–Λεντς (el)
  • Vector de Runge-Lenz (es)
  • Vettore di Lenz (it)
  • Laplace–Runge–Lenz vector (en)
  • Vecteur de Runge-Lenz (fr)
  • 라플라스-룽게-렌츠 벡터 (ko)
  • ルンゲ=レンツベクトル (ja)
  • Laplace-Runge-Lenz-vector (nl)
  • Vetor de Laplace-Runge-Lenz (pt)
  • Вектор Лапласа — Рунге — Ленца (ru)
  • Вектор Лапласа — Рунге — Ленца (uk)
  • 拉普拉斯-龍格-冷次向量 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License