An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting.

Property Value
dbo:abstract
  • Kac-Moody-Algebren, benannt nach Victor Kac und Robert Moody, sind in der mathematischen Theorie der Lie-Algebren untersuchte Algebren. Man geht von einer Matrix mit bestimmten Eigenschaften aus und wendet darauf ein Verfahren an, das an die klassische Konstruktion einer endlichdimensionalen halbeinfachen Lie-Algebra aus einer vorgegebenen Cartan-Matrix angelehnt ist. Man kann dann drei Typen solcher Kac-Moody-Algebren ausmachen. Die Algebren vom endlichen Typ (s. u.) sind die aus der klassischen Theorie bekannten endlichdimensionalen halbeinfachen Lie-Algebren, so dass die Theorie der Kac-Moody-Algebren als eine Verallgemeinerung der klassischen Theorie angesehen werden kann. Dazu kommen zwei weitere Typen, der affine Typ und der indefinite Typ (s. u.), die weder endlichdimensional noch halbeinfach sind. (de)
  • In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting. A class of Kac–Moody algebras called affine Lie algebras is of particular importance in mathematics and theoretical physics, especially two-dimensional conformal field theory and the theory of exactly solvable models. Kac discovered an elegant proof of certain combinatorial identities, the Macdonald identities, which is based on the representation theory of affine Kac–Moody algebras. Howard Garland and James Lepowsky demonstrated that Rogers–Ramanujan identities can be derived in a similar fashion. (en)
  • 数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、旗多様体との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と はロジャーズ・ラマヌジャン恒等式が類似の方法で導出できることを証明した。 (ja)
  • En mathématiques, une algèbre de Kac-Moody est une algèbre de Lie, généralement de dimension infinie, pouvant être définie par des générateurs et des relations via une matrice de Cartan généralisée. Les algèbres de Kac-Moody tiennent leur nom de Victor Kac et de Robert Moody, qui les ont indépendamment découvertes. Ces algèbres sont une généralisation des algèbres semi-simples de Lie de dimension finie, et de nombreuses propriétés liées à la structure des algèbres de Lie, notamment son système de racines, ses représentations irréductibles, ses liens avec les variétés de drapeaux ont des équivalents dans le système de Kac-Moody. Une classe d'algèbres de Kac-Moody appelées (en) est particulièrement importante en mathématiques et en physique théorique, et plus spécifiquement dans les théories conforme des champs et des systèmes complètement intégrables. Kac a trouvé une preuve élégante de certaines identités combinatoires, les (en), en se fondant sur la théorie des représentations des algèbres de Lie affines. Howard Garland et (en) démontrèrent quant à eux que les identités de Rogers-Ramanujan pouvaient être prouvées de façon similaire. (fr)
  • 리 이론에서, 카츠-무디 대수(Кац-Moody代數, 영어: Kač–Moody algebra)는 복소수 리 대수의 일종이다. 단순 리 대수와 아핀 리 대수의 공통적인 일반화이다. (ko)
  • In de abstracte algebra, een deelgebied van de wiskunde, is een Kac-Moody-algebra, genoemd naar Victor Kac en Robert Moody, die deze algebra onafhankelijk van elkaar hebben ontdekt, een Lie-algebra, meestal een oneindig-dimensionale, die door voortbrengers en relaties kan worden gedefinieerd door middel van een ghegeneraliseerde Cartan-matrix. Later werd ook de promotor van Moody, Maria Wonenburger, gezien als grondlegger van deze vorm van algebra. Deze algebra's vormen een generalisatie van eindig-dimensionale halfenkelvoudige Lie-algebra's. Veel eigenschappen met betrekking tot de structuur van een Lie-algebra, zoals het wortelsysteem, en de verbinding met , hebben in de Kac-Moody-setting natuurlijke analoga. (nl)
  • A álgebra de Kac-Moody, nomeada em honra de Victor Kac e Robert Moody, (também conhecida como álgebra de Kac-Moody Lie) é definida da seguinte forma. Dado, 1) Uma n×n matriz generalizada de Cartan C = (cij) de classificação r.2) Um vetor de espaço sobre os números complexos de dimensão 2n − r3) Um conjunto de n elementos linearmente independentes de e um conjunto de n elementos linearmente independentes do espaço dual , de tal modo que . Os são analógicos para as raízes simples de uma semi-simples álgebra de Lie, e os para as co-raízes simples. A álgebra de Kac-Moody é a álgebra de Lie definida por geradores e e os elementos de e as relações. * para ; * , para ; * , para ; * , onde é o delta de Kronecker * e , onde é a representação adjunta de . A álgebra de Lie real (possivelmente de dimensão infinita) é também considerada uma álgebra de Kac-Moody, se a sua complexificação é uma álgebra de Kac-Moody. (pt)
  • Алгебрами Каца — Муді називаються загалом нескінченновимірні алгебри Лі, що є узагальненнями напівпростих скінченновимірних алгебр Лі. Як і напівпрості скінченновимірні алгебри Лі, алгебри Каца — Муді можна задати за допомогою співвідношень Серра, лише замість матриці Картана коефіцієнти у цих співвідношеннях є елементами деякої більш загальної матриці. Напівпрості алгебри Лі є єдиними прикладами скінченновимірних алгебр Каца — Муді. У цій статті всюди де не вказано інше усі об'єкти розглядаються над алгебрично замкнутим полем K характеристика якого є рівною 0. (uk)
  • 卡茨-穆迪代数是一個李代數,通常無限維,其定義自(Victor Kac所謂的)。卡茨-穆迪代数的應用遍及數學和理論物理學。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1146292 (xsd:integer)
dbo:wikiPageLength
  • 15616 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1122666305 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • K/k055050 (en)
dbp:title
  • Kac–Moody algebra (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、旗多様体との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と はロジャーズ・ラマヌジャン恒等式が類似の方法で導出できることを証明した。 (ja)
  • 리 이론에서, 카츠-무디 대수(Кац-Moody代數, 영어: Kač–Moody algebra)는 복소수 리 대수의 일종이다. 단순 리 대수와 아핀 리 대수의 공통적인 일반화이다. (ko)
  • Алгебрами Каца — Муді називаються загалом нескінченновимірні алгебри Лі, що є узагальненнями напівпростих скінченновимірних алгебр Лі. Як і напівпрості скінченновимірні алгебри Лі, алгебри Каца — Муді можна задати за допомогою співвідношень Серра, лише замість матриці Картана коефіцієнти у цих співвідношеннях є елементами деякої більш загальної матриці. Напівпрості алгебри Лі є єдиними прикладами скінченновимірних алгебр Каца — Муді. У цій статті всюди де не вказано інше усі об'єкти розглядаються над алгебрично замкнутим полем K характеристика якого є рівною 0. (uk)
  • 卡茨-穆迪代数是一個李代數,通常無限維,其定義自(Victor Kac所謂的)。卡茨-穆迪代数的應用遍及數學和理論物理學。 (zh)
  • Kac-Moody-Algebren, benannt nach Victor Kac und Robert Moody, sind in der mathematischen Theorie der Lie-Algebren untersuchte Algebren. Man geht von einer Matrix mit bestimmten Eigenschaften aus und wendet darauf ein Verfahren an, das an die klassische Konstruktion einer endlichdimensionalen halbeinfachen Lie-Algebra aus einer vorgegebenen Cartan-Matrix angelehnt ist. Man kann dann drei Typen solcher Kac-Moody-Algebren ausmachen. Die Algebren vom endlichen Typ (s. u.) sind die aus der klassischen Theorie bekannten endlichdimensionalen halbeinfachen Lie-Algebren, so dass die Theorie der Kac-Moody-Algebren als eine Verallgemeinerung der klassischen Theorie angesehen werden kann. Dazu kommen zwei weitere Typen, der affine Typ und der indefinite Typ (s. u.), die weder endlichdimensional noch h (de)
  • In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting. (en)
  • En mathématiques, une algèbre de Kac-Moody est une algèbre de Lie, généralement de dimension infinie, pouvant être définie par des générateurs et des relations via une matrice de Cartan généralisée. Les algèbres de Kac-Moody tiennent leur nom de Victor Kac et de Robert Moody, qui les ont indépendamment découvertes. Ces algèbres sont une généralisation des algèbres semi-simples de Lie de dimension finie, et de nombreuses propriétés liées à la structure des algèbres de Lie, notamment son système de racines, ses représentations irréductibles, ses liens avec les variétés de drapeaux ont des équivalents dans le système de Kac-Moody. Une classe d'algèbres de Kac-Moody appelées (en) est particulièrement importante en mathématiques et en physique théorique, et plus spécifiquement dans les théorie (fr)
  • In de abstracte algebra, een deelgebied van de wiskunde, is een Kac-Moody-algebra, genoemd naar Victor Kac en Robert Moody, die deze algebra onafhankelijk van elkaar hebben ontdekt, een Lie-algebra, meestal een oneindig-dimensionale, die door voortbrengers en relaties kan worden gedefinieerd door middel van een ghegeneraliseerde Cartan-matrix. Later werd ook de promotor van Moody, Maria Wonenburger, gezien als grondlegger van deze vorm van algebra. (nl)
  • A álgebra de Kac-Moody, nomeada em honra de Victor Kac e Robert Moody, (também conhecida como álgebra de Kac-Moody Lie) é definida da seguinte forma. Dado, 1) Uma n×n matriz generalizada de Cartan C = (cij) de classificação r.2) Um vetor de espaço sobre os números complexos de dimensão 2n − r3) Um conjunto de n elementos linearmente independentes de e um conjunto de n elementos linearmente independentes do espaço dual , de tal modo que . Os são analógicos para as raízes simples de uma semi-simples álgebra de Lie, e os para as co-raízes simples. (pt)
rdfs:label
  • Kac-Moody-Algebra (de)
  • Algèbre de Kac-Moody (fr)
  • Kac–Moody algebra (en)
  • 카츠-무디 대수 (ko)
  • Kac-Moody-algebra (nl)
  • カッツ・ムーディ代数 (ja)
  • Álgebra de Kac-Moody (pt)
  • 卡茨-穆迪代数 (zh)
  • Алгебра Каца — Муді (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License