An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

Property Value
dbo:abstract
  • In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges. Starting with a polynomial loop algebra over finite-dimensional simple Lie algebra and performing two extensions, a central extension and an extension by a derivation, one obtains a Lie algebra which is isomorphic with an untwisted affine Kac–Moody algebra. Using the centrally extended loop algebra one may construct a current algebra in two spacetime dimensions. The Virasoro algebra is the universal central extension of the Witt algebra. Central extensions are needed in physics, because the symmetry group of a quantized system usually is a central extension of the classical symmetry group, and in the same way the corresponding symmetry Lie algebra of the quantum system is, in general, a central extension of the classical symmetry algebra. Kac–Moody algebras have been conjectured to be symmetry groups of a unified superstring theory. The centrally extended Lie algebras play a dominant role in quantum field theory, particularly in conformal field theory, string theory and in M-theory. A large portion towards the end is devoted to background material for applications of Lie algebra extensions, both in mathematics and in physics, in areas where they are actually useful. A parenthetical link,, is provided where it might be beneficial. (en)
  • リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 中心拡大は物理学で必要とされる,なぜならば量子化された系の対称性を表す群は通常古典的な対称変換群の中心拡大であり,同様に量子系の対応する symmetry リー環は一般に古典的な symmetry algebra の中心拡大であるからである.カッツ・ムーディ代数は統一超弦理論の対称変換群であると予想されている.中心拡大されたリー環は場の量子論,特に共形場理論,弦理論とM理論において,支配的な役割を果たす. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される. (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 45603435 (xsd:integer)
dbo:wikiPageLength
  • 99683 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1111113010 (xsd:integer)
dbo:wikiPageWikiLink
dbp:bgcolor
  • #F9FFF7 (en)
dbp:borderColour
  • #0073CF (en)
dbp:cellpadding
  • 6 (xsd:integer)
dbp:equation
  • : (en)
dbp:indent
  • : (en)
dbp:title
  • Computation of Lie bracket (en)
  • Derivation of the Lie algebra (en)
  • Existence of Schwinger terms (en)
  • Proof of being a derivation (en)
  • Relationship to and (en)
dbp:titlestyle
  • color:green;background:lightgrey; (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges. (en)
  • リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される. (ja)
rdfs:label
  • Lie algebra extension (en)
  • リー環の拡大 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License