An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A simple Lie group is a connected Lie group whose Lie algebra is simple.

Property Value
dbo:abstract
  • En álgebra, un álgebra de Lie simple es un álgebra de Lie que es no-abeliano y no contiene ideales propios distintos de cero. La clasificación de las es uno de los principales logros de Wilhelm Killing y Élie Cartan. Una suma directa de álgebras de Lie simples se llama álgebra de Lie semisimple. Un es un grupo de Lie conexo cuya álgebra de Lie es simple. (es)
  • In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A simple Lie group is a connected Lie group whose Lie algebra is simple. (en)
dbo:thumbnail
dbo:wikiPageID
  • 59500649 (xsd:integer)
dbo:wikiPageLength
  • 3415 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124552500 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • simple+Lie+algebra (en)
dbp:oldid
  • 44225 (xsd:integer)
dbp:title
  • Simple Lie algebra (en)
  • Lie algebra, semi-simple (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En álgebra, un álgebra de Lie simple es un álgebra de Lie que es no-abeliano y no contiene ideales propios distintos de cero. La clasificación de las es uno de los principales logros de Wilhelm Killing y Élie Cartan. Una suma directa de álgebras de Lie simples se llama álgebra de Lie semisimple. Un es un grupo de Lie conexo cuya álgebra de Lie es simple. (es)
  • In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A simple Lie group is a connected Lie group whose Lie algebra is simple. (en)
rdfs:label
  • Einfache Lie-Algebra (de)
  • Álgebra de Lie simple (es)
  • Simple Lie algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License