In statistics, logistic regression, or logit regression, or logit model is a regression model where the dependent variable (DV) is categorical. This article covers the case of binary dependent variables—that is, where it can take only two values, such as pass/fail, win/lose, alive/dead or healthy/sick. Cases with more than two categories are referred to as multinomial logistic regression, or, if the multiple categories are ordered, as ordinal logistic regression.

Property Value
dbo:abstract
• In statistics, logistic regression, or logit regression, or logit model is a regression model where the dependent variable (DV) is categorical. This article covers the case of binary dependent variables—that is, where it can take only two values, such as pass/fail, win/lose, alive/dead or healthy/sick. Cases with more than two categories are referred to as multinomial logistic regression, or, if the multiple categories are ordered, as ordinal logistic regression. Logistic regression was developed by statistician David Cox in 1958. The binary logistic model is used to estimate the probability of a binary response based on one or more predictor (or independent) variables (features). As such it is not a classification method. It could be called a qualitative response/discrete choice model in the terminology of economics. Logistic regression measures the relationship between the categorical dependent variable and one or more independent variables by estimating probabilities using a logistic function, which is the cumulative logistic distribution. Thus, it treats the same set of problems as probit regression using similar techniques, with the latter using a cumulative normal distribution curve instead. Equivalently, in the latent variable interpretations of these two methods, the first assumes a standard logistic distribution of errors and the second a standard normal distribution of errors. Logistic regression can be seen as a special case of the generalized linear model and thus analogous to linear regression. The model of logistic regression, however, is based on quite different assumptions (about the relationship between dependent and independent variables) from those of linear regression. In particular the key differences of these two models can be seen in the following two features of logistic regression. First, the conditional distribution is a Bernoulli distribution rather than a Gaussian distribution, because the dependent variable is binary. Second, the predicted values are probabilities and are therefore restricted to (0,1) through the logistic distribution function because logistic regression predicts the probability of particular outcomes. Logistic regression is an alternative to Fisher's 1936 method, linear discriminant analysis. If the assumptions of linear discriminant analysis hold, the conditioning can be reversed to produce logistic regression. The converse is not true, however, because logistic regression does not require the multivariate normal assumption of discriminant analysis. (en)
dbo:thumbnail
dbo:wikiPageID
• 226631 (xsd:integer)
dbo:wikiPageRevisionID
• 744039548 (xsd:integer)
dbp:colwidth
• 30 (xsd:integer)
dbp:id
• 48.0
dbp:title
• Econometrics Lecture
dct:subject
rdf:type
rdfs:comment
• In statistics, logistic regression, or logit regression, or logit model is a regression model where the dependent variable (DV) is categorical. This article covers the case of binary dependent variables—that is, where it can take only two values, such as pass/fail, win/lose, alive/dead or healthy/sick. Cases with more than two categories are referred to as multinomial logistic regression, or, if the multiple categories are ordered, as ordinal logistic regression. (en)
rdfs:label
• Logistic regression (en)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of