An Entity of Type: topical concept, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Expectation propagation (EP) is a technique in Bayesian machine learning. EP finds approximations to a probability distribution. It uses an iterative approach that uses the factorization structure of the target distribution. It differs from other Bayesian approximation approaches such as variational Bayesian methods. More specifically, suppose we wish to approximate an intractable probability distribution with a tractable distribution . Expectation propagation achieves this approximation by minimizing the Kullback-Leibler divergence . Variational Bayesian methods minimize instead.

Property Value
dbo:abstract
  • Expectation propagation (EP) is a technique in Bayesian machine learning. EP finds approximations to a probability distribution. It uses an iterative approach that uses the factorization structure of the target distribution. It differs from other Bayesian approximation approaches such as variational Bayesian methods. More specifically, suppose we wish to approximate an intractable probability distribution with a tractable distribution . Expectation propagation achieves this approximation by minimizing the Kullback-Leibler divergence . Variational Bayesian methods minimize instead. If is a Gaussian , then is minimized with and being equal to the mean of and the covariance of , respectively; this is called . (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 14923880 (xsd:integer)
dbo:wikiPageLength
  • 2466 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1040760560 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Expectation propagation (EP) is a technique in Bayesian machine learning. EP finds approximations to a probability distribution. It uses an iterative approach that uses the factorization structure of the target distribution. It differs from other Bayesian approximation approaches such as variational Bayesian methods. More specifically, suppose we wish to approximate an intractable probability distribution with a tractable distribution . Expectation propagation achieves this approximation by minimizing the Kullback-Leibler divergence . Variational Bayesian methods minimize instead. (en)
rdfs:label
  • Expectation propagation (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License