This HTML5 document contains 369 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-nohttp://no.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
dbpedia-jahttp://ja.dbpedia.org/resource/
n8http://lt.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
dbpedia-eohttp://eo.dbpedia.org/resource/
dbpedia-svhttp://sv.dbpedia.org/resource/
dbpedia-nlhttp://nl.dbpedia.org/resource/
n58https://global.dbpedia.org/id/
dbpedia-trhttp://tr.dbpedia.org/resource/
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-cahttp://ca.dbpedia.org/resource/
n31https://archive.org/details/
goldhttp://purl.org/linguistics/gold/
dbpedia-ethttp://et.dbpedia.org/resource/
n23http://dbpedia.org/resource/File:
dbohttp://dbpedia.org/ontology/
n55http://ckb.dbpedia.org/resource/
dbpedia-elhttp://el.dbpedia.org/resource/
dbpedia-rohttp://ro.dbpedia.org/resource/
n74https://archive.org/details/historyofmathema00cajo_0/pages/
dbpedia-zhhttp://zh.dbpedia.org/resource/
foafhttp://xmlns.com/foaf/0.1/
n87http://sco.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbpedia-skhttp://sk.dbpedia.org/resource/
n33http://lv.dbpedia.org/resource/
dbpedia-glhttp://gl.dbpedia.org/resource/
dbpedia-pthttp://pt.dbpedia.org/resource/
dbpedia-mrhttp://mr.dbpedia.org/resource/
dbpedia-alshttp://als.dbpedia.org/resource/
n78http://pa.dbpedia.org/resource/
dbpedia-ukhttp://uk.dbpedia.org/resource/
dbpedia-dehttp://de.dbpedia.org/resource/
xsdhhttp://www.w3.org/2001/XMLSchema#
n66http://cv.dbpedia.org/resource/
dbpedia-kohttp://ko.dbpedia.org/resource/
n29http://tl.dbpedia.org/resource/
dbpedia-ithttp://it.dbpedia.org/resource/
n42http://ast.dbpedia.org/resource/
dbpedia-simplehttp://simple.dbpedia.org/resource/
dbpedia-idhttp://id.dbpedia.org/resource/
dbpedia-nnhttp://nn.dbpedia.org/resource/
n77http://www.cs.berkeley.edu/~wkahan/MathH110/
dbpedia-cshttp://cs.dbpedia.org/resource/
dbpedia-bghttp://bg.dbpedia.org/resource/
n40http://behindtheguesses.blogspot.com/2009/04/
dbpedia-huhttp://hu.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
n25http://ta.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
dbpedia-hehttp://he.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
n28https://archive.org/details/117714283/page/
dbpedia-hrhttp://hr.dbpedia.org/resource/
dbpedia-kahttp://ka.dbpedia.org/resource/
n71https://archive.org/details/historyofvectora0000crow/page/
dbpedia-eshttp://es.dbpedia.org/resource/
n82http://am.dbpedia.org/resource/
n20http://ml.dbpedia.org/resource/
dbpedia-vihttp://vi.dbpedia.org/resource/
dbpedia-srhttp://sr.dbpedia.org/resource/
n68http://uz.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
n60http://ba.dbpedia.org/resource/
n27https://web.archive.org/web/20060424151900/http:/physics.syr.edu/courses/java-suite/
dbrhttp://dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-euhttp://eu.dbpedia.org/resource/
dbpedia-ishttp://is.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-arhttp://ar.dbpedia.org/resource/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-dahttp://da.dbpedia.org/resource/
dbpedia-fihttp://fi.dbpedia.org/resource/
dbpedia-slhttp://sl.dbpedia.org/resource/
dbpedia-kkhttp://kk.dbpedia.org/resource/
dbpedia-fahttp://fa.dbpedia.org/resource/
dbpedia-thhttp://th.dbpedia.org/resource/
dbpedia-ruhttp://ru.dbpedia.org/resource/
n17http://commons.wikimedia.org/wiki/Special:FilePath/
n57http://bs.dbpedia.org/resource/
n19http://hy.dbpedia.org/resource/
n36https://www.mathcentre.ac.uk/resources/uploaded/
n65http://hi.dbpedia.org/resource/
dbpedia-pmshttp://pms.dbpedia.org/resource/

Statements

Subject Item
dbr:Cross_product
rdf:type
owl:Thing dbo:MilitaryConflict
rdfs:label
Kruisproduct Producto vectorial 叉积 Vektora produto Prodotto vettoriale Kryssprodukt Kreuzprodukt Produto vetorial Biderketa bektorial Produit vectoriel 벡터곱 Διανυσματικό γινόμενο Cross product Vektorový součin Producte vectorial Iloczyn wektorowy クロス積 ضرب اتجاهي Perkalian vektor Векторний добуток Векторное произведение
rdfs:comment
En kryssprodukt är en form av vektorprodukt som är definierad för vissa vektorrum (över R3 och R7). Den är antikommutativ (det vill säga, a × b = −(b × a)) och är distributiv över addition (det vill säga, a × (b + c) = a × b + a × c). Kryssprodukten är en pseudovektor. Perkalian vektor adalah operasi perkalian dengan dua operand (objek yang dikalikan) berupa vektor. Tetapi hasil operasi ini tidak selalu adalah vektor. Terdapat tiga macam perkalian vektor, yaitu produk skalar atau perkalian titik (bahasa Inggris: dot product atau scalar product, perkalian silang (bahasa Inggris: cross product atau vector product atau directed area product) dan perkalian langsung (bahasa Inggris: direct product). In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product). En matemàtiques, el producte vectorial o producte extern és una operació entre dos vectors d'un espai euclidià tridimensional orientat que retorna un altre vector ortogonal als dos vectors originals. És diferent doncs, del producte escalar o producte intern que retorna un escalar. Iloczyn wektorowy – działanie dwuargumentowe przyporządkowujące parze wektorów 3-wymiarowej przestrzeni euklidesowej pewien wektor tej przestrzeni. Niech i będą wektorami 3-wymiarowej przestrzeni euklidesowej z ustaloną bazą uporządkowaną Iloczyn wektorowy wektorów i określa się następująco: Wynik działania w sposób istotny zależy od doboru bazy przestrzeni. W przypadku, gdy baza trójwymiarowej przestrzeni kartezjańskiej nie jest sprecyzowana, przyjmuje się za bazę kanoniczną złożoną z wektorów Das Kreuzprodukt, auch Vektorprodukt, vektorielles Produkt oder äußeres Produkt, ist eine Verknüpfung im dreidimensionalen euklidischen Vektorraum, die zwei Vektoren wieder einen Vektor zuordnet. Um es von anderen Produkten, insbesondere vom Skalarprodukt, zu unterscheiden, wird es im deutsch- und englischsprachigen Raum mit einem Malkreuz als Multiplikationszeichen geschrieben (vgl. Abschnitt Schreibweisen). Die Bezeichnungen Kreuzprodukt und Vektorprodukt gehen auf den Physiker Josiah Willard Gibbs zurück, die Bezeichnung äußeres Produkt wurde von Hermann Graßmann geprägt. 在数学和向量代数领域,外積(cross product)又称叉积、叉乘、向量积(vector product),是对三维空间中的两个向量的二元运算,使用符号 。与点积不同,它的运算结果是向量。对于线性无关的两个向量 和 ,它们的外积写作 ,是 和 所在平面的法线向量,与 和 都垂直。外积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们没有线性无关的分量),亦或任意一个的长度为零,那么它们的外积为零。推广开来,外积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们外积的模长即为两者长度的乘积。 外积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,外积还依赖于定向或右手定則。 Vektorový součin je v matematice binární operace vektorů v trojrozměrném vektorovém prostoru. Výsledkem této operace je vektor (na rozdíl od součinu skalárního, jehož výsledkem je při součinu dvou vektorů skalár). Výsledný vektor je kolmý k oběma původním vektorům. En matemáticas, el producto vectorial de Gibbs o producto cruz es una operación binaria entre dos vectores en un espacio tridimensional. El resultado es un vector perpendicular a los vectores que se multiplican, y por lo tanto normal al plano que los contiene. Debido a su capacidad de obtener un vector perpendicular a otros dos vectores, cuyo sentido varía de acuerdo al ángulo formado entre estos dos vectores, esta operación es aplicada con frecuencia para resolver problemas matemáticos, físicos o de ingeniería. Em matemática, o produto vetorial é uma operação binária sobre dois vetores em um espaço vetorial tridimensional e é denotado por ×. Dados dois vetores independentes linearmente a e b, o produto vetorial a × b é um vetor perpendicular ao vetor a e ao vetor b e é a normal do plano contendo os dois vetores. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um escalar. En matematiko, la vektora produto aŭ kruca produto estas operacio sur du vektoroj en tri-dimensia eŭklida spaco, rezulto de kiu estas la alia vektoro. Kontraste, la skalara produto de du vektoroj estas skalaro. En mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs. Στα μαθηματικά, το εξωτερικό γινόμενο, ή αλλιώς διανυσματικό γινόμενο είναι μια δυαδική λειτουργία, σε δύο διανύσματα στον τρισδιάστατο χώρο και παριστάνονται με το σύμβολο ×. Το γινόμενο a × b δύο γραμμικών ανεξαρτήτων διανυσμάτων a και b, είναι ένα τρίτο διάνυσμα το οποίο είναι κάθετο προς τα δύο (a και b). Επομένως το a × b είναι κάθετο προς το επίπεδο, που περιέχει τα a και b. Έχει πολλές εφαρμογές στα μαθηματικά, στην φυσική, στην μηχανική και στον προγραμματισμό. Δεν θα πρέπει να συγχέεται με το εσωτερικό γινόμενο. Het kruisproduct, vectorproduct, vectorieel product, uitwendig product of uitproduct, niet te verwarren met het Engelse 'outer product', dat een tensorproduct is, van twee vectoren in drie dimensies is een vector die loodrecht staat op beide vectoren, en waarvan de grootte gelijk is aan het product van de groottes van de beide vectoren en de sinus van de hoek tussen de twee vectoren. De richting van het kruisproduct wordt vastgelegd door de kurkentrekker- of de rechterhandregel. In tegenstelling tot het inwendig product, is het kruisproduct geen scalair, maar een vector. Ве́кторний добу́ток — білінійна, антисиметрична операція на векторах у тривимірному просторі. На відміну від скалярного добутку векторів евклідового простору, результатом векторного добутку є вектор (його також називають «векторним добутком»), а не скаляр. Векторний добуток не має властивості комутативності та асоціативності. Він є антикомутативним і, на відміну від скалярного добутку векторів, результат є знову вектором. Має багато технічних і фізичних застосувань. Наприклад, момент імпульсу і сила Лоренца математично записуються у вигляді векторного добутку. Biderketa bektoriala hiru dimentsioko bektore-espazio batean definitzen den eragiketa bitarra da. Bi bektore harturik, haiekiko norabide elkarzuta duen bektorea du emaitza, noranzkoa eskuin eskuaren arauaaren araberakoa duena eta magnitude, luzera edo modulua a eta b bektoreak osatzen duten paralelogramoaren azalera duena. Bereziki fisikan eta ingeniaritza problemetan ditu aplikazioak. Honela kalkulatzen da, determinante baten bitartez: Biderkaduraren modulua edo norma kalkulatzeko, biderkagaien normak eta bi bektoreen arteko angeluaren sinua biderkatzea nahikoa da: 선형대수학에서 벡터곱(vector곱, 영어: vector product) 또는 가위곱(영어: cross product)은 수학에서 3차원 공간의 벡터들간의 이항연산의 일종이다. 연산의 결과가 스칼라인 스칼라곱과는 달리 연산의 결과가 벡터이다. 물리학의 각운동량, 로런츠 힘 등의 공식에 등장한다. في الرياضيات، الضرب الاتجاهي (أو الضرب التقاطعي أو الجداء المتجهي أو الجداء الشعاعي) هو عملية ثنائية بين متجهين، في فضاء إقليدي ثلاثي الأبعاد، تكون نتيجتها متجه متعامد على المستوي الذي ينتمي له المتجهان طرفا هذه العملية. وهذا بخلاف الضرب القياسي الذي يكون حاصله كمية قياسية. إذا كان و متجهان بينهما زاوية، فإن حاصل الضرب الاتجاهي لهما هو: حيث هو متجه وحدة عمودي على المستوي الحاوي للمتجهين الأصليين ) و، و هو محدد المتجهين. Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору. In matematica, in particolare nel calcolo vettoriale, il prodotto vettoriale è un'operazione binaria interna tra due vettori in uno spazio euclideo tridimensionale che restituisce un altro vettore che è normale al piano formato dai vettori di partenza. 外積(がいせき)は、3次元空間(3次元内積空間)において定義される、2つのベクトルから新たなベクトルを与える二項演算である。か角括弧を用いて表現する。 日本(漢字文化圏)ではこの二項演算を内積に対して外積と呼ぶ。ただし、外積に対応する西洋語(ドイツ語: Äußeres Produkt、英語: Exterior algebra)には、グラスマン代数(外積代数)のウェッジ積等の意味もあるため、区別する為にクロス積(cross product)と呼ばれる。また、内積がスカラー積と呼ばれるのに対して、ベクトル積(vector product)とも呼ばれる。なお、(outer product)は直積(direct product)を意味する。 以下、この二項演算をクロス積またはベクトル積と表記する。
rdfs:seeAlso
dbr:Seven-dimensional_cross_product dbr:Lorentz_force dbr:Triple_product
foaf:depiction
n17:Exterior_calc_cross_product.svg n17:Cross_product.gif n17:3D_Vector.svg n17:Cross_product_distributivity.svg n17:Cross_product_mnemonic.svg n17:Cross_product_scalar_multiplication.svg n17:Cross_product_triple.svg n17:Cross_product_vector.svg n17:Cross_product_parallelogram.svg n17:Right_hand_rule_cross_product.svg n17:Sarrus_rule.svg n17:Sarrus_rule_cross_product_ab.svg n17:Parallelepiped_volume.svg
dcterms:subject
dbc:Analytic_geometry dbc:Bilinear_maps dbc:Operations_on_vectors
dbo:wikiPageID
157092
dbo:wikiPageRevisionID
1124312298
dbo:wikiPageWikiLink
dbr:Anticommutativity dbr:Levi-Civita_symbol dbr:Pythagorean_trigonometric_identity dbr:Gradient dbr:Linearity dbr:SO(3) dbr:Metric_space dbr:Rotation_matrix dbr:Lagrange's_identity dbr:Quaternion dbr:Sarrus's_rule dbr:Associative dbr:Cancellation_law dbr:Main_diagonal dbr:Raising_and_lowering_indices dbr:Geometric_algebra dbr:Torque dbr:Magnitude_(vector) dbr:Seven-dimensional_cross_product dbr:Exterior_algebra dbr:Polyhedron dbr:2-form dbr:Scalar_triple_product dbr:Cofactor_expansion dbr:Multivector dbr:Parallelepiped dbr:Distributivity dbr:Elements_of_Dynamic dbr:Polar_vector dbr:Computational_geometry dbr:Column_vector n23:3D_Vector.svg dbr:Unit_vector dbr:William_Rowan_Hamilton dbr:Quadruple_product dbr:Vectorial_Mechanics dbr:Hurwitz's_theorem_(normed_division_algebras) n23:Cross_product.gif n23:Cross_product_distributivity.svg n23:Cross_product_mnemonic.svg n23:Cross_product_parallelogram.svg n23:Cross_product_scalar_multiplication.svg n23:Cross_product_triple.svg n23:Cross_product_vector.svg dbr:Rotation_(mathematics) dbr:Parallelogram dbr:Multiplication dbr:Multiplication_of_vectors dbr:Parity_(physics) dbr:Sign_(mathematics) dbr:Roberto_Marcolongo dbr:Lie_theory dbr:Area dbr:Alternating_form dbr:Classical_mechanics dbr:Scalar_(mathematics) dbr:Binary_operation dbr:Indexed_family dbr:Inner_product dbr:Graded_vector_space dbr:Space-time n23:Parallelepiped_volume.svg dbr:Commutative dbr:Augustin-Louis_Cauchy dbr:Product_rule dbr:Commutator dbr:Zero_vector dbr:Einstein_summation_convention dbr:Vector_Laplacian dbr:Algebra_over_a_field dbr:Cartesian_product dbr:Gramian_matrix dbr:Inverse_matrix dbr:Applied_mathematics dbr:Syracuse_University dbr:Dot_product dbr:Mixed_tensor dbr:Riemannian_volume_form dbr:Orientation_(vector_space) dbr:Minor_(linear_algebra) dbr:P-vector dbr:Dual_space dbr:The_plane dbr:E._A._Milne dbr:Textbook n23:Exterior_calc_cross_product.svg dbr:Maxwell's_equations n23:Right_hand_rule_cross_product.svg dbr:William_Kingdon_Clifford dbr:Cesare_Burali-Forti dbr:Lie_algebra dbr:Yale_University_Press dbr:Transpose dbr:Edwin_Bidwell_Wilson dbc:Analytic_geometry n23:Sarrus_rule.svg n23:Sarrus_rule_cross_product_ab.svg dbr:Collinear dbr:Projection_(linear_algebra) dbr:Formal_calculation dbr:Heisenberg_algebra dbr:Moment_(physics) dbr:Orthogonal_complement dbr:Pseudovector dbr:Orthogonal_group dbr:Open_Court_Publishing_Company dbr:Bilinear_map dbr:Null_space dbr:Multiple_cross_products dbr:Mnemonic dbr:Curl_(mathematics) dbr:Right-hand_rule dbr:Vector_space dbr:Rotation_group_SO(3) dbr:Binet–Cauchy_identity dbr:Engineering dbr:Vector_Analysis dbr:Outer_product dbr:Oliver_Heaviside dbr:Java_(programming_language) dbr:Hodge_dual dbr:Acute_angle dbr:Josiah_Willard_Gibbs dbr:Perpendicular dbr:Rule_of_Sarrus dbr:Hermann_Grassmann dbr:× dbr:Computer_graphics dbr:Tetrahedron dbr:Skew-symmetric_matrix dbr:James_Clerk_Maxwell dbr:Skew_lines dbr:Physics dbr:Joseph-Louis_Lagrange dbr:Even_permutation dbr:Rigid_body dbr:Multilinear_algebra dbr:Angular_momentum dbr:Euclidean_norm dbr:Computer_programming dbr:Euclidean_space dbr:Euclidean_vector dbr:Angular_velocity dbr:Euclidean_vector_space dbr:Methuen_Publishing dbr:Octonion dbr:Mathematics dbc:Bilinear_maps dbr:Orientation_(mathematics) dbr:Matrix_(mathematics) dbr:Vector_operator dbr:Distributive_property dbr:Lie_bracket dbr:Angle dbr:Vector_(geometry) dbr:Epipolar_geometry dbr:Isotropic dbr:Normal_(geometry) dbr:Vector_calculus dbr:Scalar_component dbr:Volume_form dbr:Vector_triple_product dbr:Bivector dbr:Jacobi_identity dbr:Unit_vectors dbr:Skew-symmetric_tensor dbr:Linearly_independent_vectors dbr:Hodge_star dbr:Clifford_algebra dbc:Operations_on_vectors dbr:France dbr:Kronecker_delta dbr:Lorentz_force dbr:Normed_division_algebra
dbo:wikiPageExternalLink
n27:crosspro.html n28:61 n31:117714283 n36:mc-ty-vectorprod-2009-1.pdf n40:dot-and-cross-products.html n71:83 n71:154 n31:historyofmathema00cajo_0 n74:134 n77:Cross.pdf n31:historyvectorana00crow
owl:sameAs
dbpedia-sk:Vektorový_súčin dbpedia-uk:Векторний_добуток wikidata:Q178192 n8:Vektorinė_sandauga dbpedia-ko:벡터곱 dbpedia-ja:クロス積 dbpedia-id:Perkalian_vektor dbpedia-pt:Produto_vetorial dbpedia-kk:Векторлық_көбейтінді n19:Վեկտորական_արտադրյալ n20:സദിശ_ഗുണകാങ്കം dbpedia-es:Producto_vectorial dbpedia-hr:Vektorski_produkt n25:குறுக்குப்_பெருக்கு_(திசையன்) dbpedia-he:מכפלה_וקטורית n29:Produktong_krus dbpedia-nl:Kruisproduct dbpedia-el:Διανυσματικό_γινόμενο n33:Vektoriālais_reizinājums dbpedia-mr:फुली_गुणाकार dbpedia-bg:Векторно_произведение dbpedia-eo:Vektora_produto dbpedia-sl:Vektorski_produkt dbpedia-et:Vektorkorrutis dbpedia-no:Vektorprodukt n42:Productu_vectorial dbpedia-ro:Produs_vectorial dbpedia-sv:Kryssprodukt dbpedia-ru:Векторное_произведение dbpedia-da:Krydsprodukt dbpedia-hu:Vektoriális_szorzat dbpedia-tr:Çapraz_çarpım dbpedia-eu:Biderketa_bektorial dbpedia-cs:Vektorový_součin dbpedia-it:Prodotto_vettoriale dbpedia-gl:Produto_vectorial n55:لێکدانی_دەرەکی dbpedia-is:Krossfeldi n57:Vektorski_proizvod n58:jWC9 dbpedia-ar:ضرب_اتجاهي n60:Векторлы_ҡабатландыҡ dbpedia-sr:Vektorski_proizvod dbpedia-ca:Producte_vectorial n65:सदिश_गुणनफल n66:Векторла_хутлав dbpedia-vi:Tích_vectơ n68:Vektor_koʻpaytma dbpedia-ka:ვექტორული_ნამრავლი dbpedia-fr:Produit_vectoriel dbpedia-fa:ضرب_خارجی dbpedia-fi:Ristitulo freebase:m.014m_h dbpedia-zh:叉积 n78:ਕਰੌਸ_ਪ੍ਰੋਡਕਟ dbpedia-th:ผลคูณไขว้ dbpedia-als:Kreuzprodukt dbpedia-pms:Prodot_vetorial n82:ስፋት_ብዜት dbpedia-pl:Iloczyn_wektorowy dbpedia-simple:Cross_product dbpedia-de:Kreuzprodukt dbpedia-nn:Kryssprodukt n87:Cross_product
dbp:wikiPageUsesTemplate
dbt:= dbt:Math dbt:Short_description dbt:Linear_algebra dbt:About dbt:! dbt:Citation_needed dbt:Cite_book dbt:Further dbt:Which dbt:See_also dbt:Section_link dbt:Math_proof dbt:Mvar dbt:Springer dbt:Sup dbt:Abs dbt:Su dbt:Original_research_section dbt:Redirect dbt:Main dbt:Reflist dbt:Sfnp
dbo:thumbnail
n17:Cross_product_vector.svg?width=300
dbp:b
i=0
dbp:id
p/c027120
dbp:p
n–1
dbp:proof
Evaluation of the cross product gives Hence, the left hand side equals Now, for the right hand side, And its transpose is Evaluation of the right hand side gives Comparison shows that the left hand side equals the right hand side.
dbp:title
Proof by substitution Cross product
dbo:abstract
Στα μαθηματικά, το εξωτερικό γινόμενο, ή αλλιώς διανυσματικό γινόμενο είναι μια δυαδική λειτουργία, σε δύο διανύσματα στον τρισδιάστατο χώρο και παριστάνονται με το σύμβολο ×. Το γινόμενο a × b δύο γραμμικών ανεξαρτήτων διανυσμάτων a και b, είναι ένα τρίτο διάνυσμα το οποίο είναι κάθετο προς τα δύο (a και b). Επομένως το a × b είναι κάθετο προς το επίπεδο, που περιέχει τα a και b. Έχει πολλές εφαρμογές στα μαθηματικά, στην φυσική, στην μηχανική και στον προγραμματισμό. Δεν θα πρέπει να συγχέεται με το εσωτερικό γινόμενο. Αν δύο διανύσματα έχουν την ίδια κατεύθυνση (ή έχουν την ακριβώς αντίθετη μεταξύ τους, δηλαδή δεν είναι γραμμικώς ανεξάρτητα) ή ένα από τα δύο είναι το μηδενικό διάνυσμα, τότε το γινόμενο τους είναι το μηδενικό. Πιο γενικά, το μέγεθος του γινομένου ισούται με την περιοχή του παραλληλογράμμου, που τα διανύσματα ορίζουν τις πλευρές του. Συγκεκριμένα, το μέγεθος του γινομένου δύο καθέτων διανυσμάτων είναι το γινόμενο των μηκών τους. Υπάρχει το αντίθετο (π.χ., a × b = −(b × a)) και ισχύει η επιμεριστική ιδιότητα (π.χ., a × (b + c) = a × b + a × c). Όπως το εσωτερικό γινόμενο, εξαρτάται από τη μετρική του Ευκλείδιου χώρου. Σε αντίθεση όμως με το εσωτερικό γινόμενο, εξαρτάται από την επιλογή του προσανατολισμού. Perkalian vektor adalah operasi perkalian dengan dua operand (objek yang dikalikan) berupa vektor. Tetapi hasil operasi ini tidak selalu adalah vektor. Terdapat tiga macam perkalian vektor, yaitu produk skalar atau perkalian titik (bahasa Inggris: dot product atau scalar product, perkalian silang (bahasa Inggris: cross product atau vector product atau directed area product) dan perkalian langsung (bahasa Inggris: direct product). En mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs. Das Kreuzprodukt, auch Vektorprodukt, vektorielles Produkt oder äußeres Produkt, ist eine Verknüpfung im dreidimensionalen euklidischen Vektorraum, die zwei Vektoren wieder einen Vektor zuordnet. Um es von anderen Produkten, insbesondere vom Skalarprodukt, zu unterscheiden, wird es im deutsch- und englischsprachigen Raum mit einem Malkreuz als Multiplikationszeichen geschrieben (vgl. Abschnitt Schreibweisen). Die Bezeichnungen Kreuzprodukt und Vektorprodukt gehen auf den Physiker Josiah Willard Gibbs zurück, die Bezeichnung äußeres Produkt wurde von Hermann Graßmann geprägt. Das Kreuzprodukt der Vektoren und ist ein Vektor, der senkrecht auf der von den beiden Vektoren aufgespannten Ebene steht und mit ihnen ein Rechtssystem bildet. Die Länge dieses Vektors entspricht dem Flächeninhalt des Parallelogramms, das von den Vektoren und aufgespannt wird. In der Physik tritt das Kreuzprodukt an vielen Stellen auf, zum Beispiel im Elektromagnetismus bei der Berechnung der Lorentzkraft oder des Poynting-Vektors. In der klassischen Mechanik wird es bei Drehgrößen wie dem Drehmoment und dem Drehimpuls oder bei Scheinkräften wie der Corioliskraft benutzt. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product). If two vectors have the same direction or have the exact opposite direction from each other (that is, they are not linearly independent), or if either one has zero length, then their cross product is zero. More generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths. The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition (that is, a × (b + c) = a × b + a × c). The space together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket. Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also depends on a choice of orientation (or "handedness") of the space (it's why an oriented space is needed). In connection with the cross product, the exterior product of vectors can be used in arbitrary dimensions (with a bivector or 2-form result) and is independent of the orientation of the space. The product can be generalized in various ways, using the orientation and metric structure just as for the traditional 3-dimensional cross product, one can, in n dimensions, take the product of n − 1 vectors to produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions. The cross-product in seven dimensions has undesirable properties (e.g. it fails to satisfy the Jacobi identity), however, so it is not used in mathematical physics to represent quantities such as multi-dimensional space-time. (See , below, for other dimensions.) Vektorový součin je v matematice binární operace vektorů v trojrozměrném vektorovém prostoru. Výsledkem této operace je vektor (na rozdíl od součinu skalárního, jehož výsledkem je při součinu dvou vektorů skalár). Výsledný vektor je kolmý k oběma původním vektorům. Biderketa bektoriala hiru dimentsioko bektore-espazio batean definitzen den eragiketa bitarra da. Bi bektore harturik, haiekiko norabide elkarzuta duen bektorea du emaitza, noranzkoa eskuin eskuaren arauaaren araberakoa duena eta magnitude, luzera edo modulua a eta b bektoreak osatzen duten paralelogramoaren azalera duena. Bereziki fisikan eta ingeniaritza problemetan ditu aplikazioak. Honela kalkulatzen da, determinante baten bitartez: Biderkaduraren modulua edo norma kalkulatzeko, biderkagaien normak eta bi bektoreen arteko angeluaren sinua biderkatzea nahikoa da: 外積(がいせき)は、3次元空間(3次元内積空間)において定義される、2つのベクトルから新たなベクトルを与える二項演算である。か角括弧を用いて表現する。 日本(漢字文化圏)ではこの二項演算を内積に対して外積と呼ぶ。ただし、外積に対応する西洋語(ドイツ語: Äußeres Produkt、英語: Exterior algebra)には、グラスマン代数(外積代数)のウェッジ積等の意味もあるため、区別する為にクロス積(cross product)と呼ばれる。また、内積がスカラー積と呼ばれるのに対して、ベクトル積(vector product)とも呼ばれる。なお、(outer product)は直積(direct product)を意味する。 以下、この二項演算をクロス積またはベクトル積と表記する。 En kryssprodukt är en form av vektorprodukt som är definierad för vissa vektorrum (över R3 och R7). Den är antikommutativ (det vill säga, a × b = −(b × a)) och är distributiv över addition (det vill säga, a × (b + c) = a × b + a × c). Kryssprodukten är en pseudovektor. En matematiko, la vektora produto aŭ kruca produto estas operacio sur du vektoroj en tri-dimensia eŭklida spaco, rezulto de kiu estas la alia vektoro. Kontraste, la skalara produto de du vektoroj estas skalaro. La vektora produto estas difinita nur en tridimensioj (aǔ pli ol tri, vidu la lastan paragrafon).Algebra strukturo difinita per la vektora produto estas ne asocieca.Simile al la skalara produto, ĝi dependas de la metriko de eŭklida spaco.Malsimile al la skalara produto, ĝi dependas ankaŭ de la elekto de orientiĝo. Por ajnaj elektoj de orientiĝo, la vektora produto devas esti estimata NE kiel vektoro, sed kiel . Ве́кторний добу́ток — білінійна, антисиметрична операція на векторах у тривимірному просторі. На відміну від скалярного добутку векторів евклідового простору, результатом векторного добутку є вектор (його також називають «векторним добутком»), а не скаляр. Векторний добуток двох векторів у тривимірному евклідовому просторі — вектор, перпендикулярний до обох вихідних векторів, довжина якого дорівнює площі паралелограма, утвореного вихідними векторами, а вибір з двох напрямків визначається так, щоб трійка з векторів-множників, узятих в такому ж порядку, як записано в добутку, і отриманого вектора була правою. Векторний добуток колінеарних векторів (зокрема, якщо хоча б один з множників — нульовий вектор) вважається рівним нульовому вектору. Таким чином, для визначення векторного добутку двох векторів необхідно задати орієнтацію простору, тобто сказати, яка трійка векторів є правою, а яка — лівою. При цьому не є обов'язковим задання у розглянутому просторі будь-якої системи координат. Зокрема, при заданій орієнтації простору результат векторного добутку не залежить від того, чи є розглядувана система координат правою, чи лівою. При цьому формули вираження координат векторного добутку через координати вихідних векторів у правій і лівій ортонормованій прямокутній системі координат відрізняються знаком. Векторний добуток не має властивості комутативності та асоціативності. Він є антикомутативним і, на відміну від скалярного добутку векторів, результат є знову вектором. Корисний для «вимірювання» перпендикулярності векторів — модуль векторного добутку двох векторів дорівнює добутку їхніх модулів, якщо вони перпендикулярні, і зменшується до нуля, якщо вектори колінеарні. Має багато технічних і фізичних застосувань. Наприклад, момент імпульсу і сила Лоренца математично записуються у вигляді векторного добутку. En matemáticas, el producto vectorial de Gibbs o producto cruz es una operación binaria entre dos vectores en un espacio tridimensional. El resultado es un vector perpendicular a los vectores que se multiplican, y por lo tanto normal al plano que los contiene. Debido a su capacidad de obtener un vector perpendicular a otros dos vectores, cuyo sentido varía de acuerdo al ángulo formado entre estos dos vectores, esta operación es aplicada con frecuencia para resolver problemas matemáticos, físicos o de ingeniería. Iloczyn wektorowy – działanie dwuargumentowe przyporządkowujące parze wektorów 3-wymiarowej przestrzeni euklidesowej pewien wektor tej przestrzeni. Niech i będą wektorami 3-wymiarowej przestrzeni euklidesowej z ustaloną bazą uporządkowaną Iloczyn wektorowy wektorów i określa się następująco: * jeżeli wektory i są liniowo zależne, to * jeżeli wektory i są liniowo niezależne, to gdzie 1. * jest prostopadły zarówno do i tzn. jest wektorem normalnym do płaszczyzny wyznaczonej przez i 2. * długość wektora jest równa polu powierzchni równoległoboku wyznaczonego przez wektory i 3. * układ wektorów jest zorientowany zgodnie z bazą Wynik działania w sposób istotny zależy od doboru bazy przestrzeni. W przypadku, gdy baza trójwymiarowej przestrzeni kartezjańskiej nie jest sprecyzowana, przyjmuje się za bazę kanoniczną złożoną z wektorów Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору. Таким образом, для определения векторного произведения двух векторов необходимо задать ориентацию пространства, то есть сказать, какая тройка векторов является правой, а какая — левой. При этом не является обязательным задание в рассматриваемом пространстве какой-либо системы координат. В частности, при заданной ориентации пространства результат векторного произведения не зависит от того, является ли рассматриваемая система координат правой или левой. При этом формулы выражения координат векторного произведения через координаты исходных векторов в правой и левой ортонормированной прямоугольной системе координат отличаются знаком. Векторное произведение не обладает свойствами коммутативности и ассоциативности. Оно является антикоммутативным и, в отличие от скалярного произведения векторов, результат является опять вектором. Полезно для «измерения» перпендикулярности векторов — модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы коллинеарны. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. In matematica, in particolare nel calcolo vettoriale, il prodotto vettoriale è un'operazione binaria interna tra due vettori in uno spazio euclideo tridimensionale che restituisce un altro vettore che è normale al piano formato dai vettori di partenza. Il prodotto vettoriale è indicato con il simbolo o con il simbolo . Il secondo simbolo è però anche usato per indicare il prodotto esterno (o prodotto wedge) nell'algebra di Grassmann, di Clifford e nelle forme differenziali. Storicamente, il prodotto esterno è stato definito da Grassmann circa trent'anni prima che Gibbs e Heaviside definissero il prodotto vettoriale. في الرياضيات، الضرب الاتجاهي (أو الضرب التقاطعي أو الجداء المتجهي أو الجداء الشعاعي) هو عملية ثنائية بين متجهين، في فضاء إقليدي ثلاثي الأبعاد، تكون نتيجتها متجه متعامد على المستوي الذي ينتمي له المتجهان طرفا هذه العملية. وهذا بخلاف الضرب القياسي الذي يكون حاصله كمية قياسية. إذا كان و متجهان بينهما زاوية، فإن حاصل الضرب الاتجاهي لهما هو: حيث هو متجه وحدة عمودي على المستوي الحاوي للمتجهين الأصليين ) و، و هو محدد المتجهين. 선형대수학에서 벡터곱(vector곱, 영어: vector product) 또는 가위곱(영어: cross product)은 수학에서 3차원 공간의 벡터들간의 이항연산의 일종이다. 연산의 결과가 스칼라인 스칼라곱과는 달리 연산의 결과가 벡터이다. 물리학의 각운동량, 로런츠 힘 등의 공식에 등장한다. 在数学和向量代数领域,外積(cross product)又称叉积、叉乘、向量积(vector product),是对三维空间中的两个向量的二元运算,使用符号 。与点积不同,它的运算结果是向量。对于线性无关的两个向量 和 ,它们的外积写作 ,是 和 所在平面的法线向量,与 和 都垂直。外积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们没有线性无关的分量),亦或任意一个的长度为零,那么它们的外积为零。推广开来,外积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们外积的模长即为两者长度的乘积。 外积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,外积还依赖于定向或右手定則。 Em matemática, o produto vetorial é uma operação binária sobre dois vetores em um espaço vetorial tridimensional e é denotado por ×. Dados dois vetores independentes linearmente a e b, o produto vetorial a × b é um vetor perpendicular ao vetor a e ao vetor b e é a normal do plano contendo os dois vetores. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um escalar. Se dois vetores possuem a mesma direção (ou têm a exata direção oposta um ao outro, ou seja, não são linearmente independentes) ou um deles é o vetor 0, seu produto vetorial é o vetor 0. Genericamente, a magnitude do produto vetorial é igual a área do paralelogramo com os dois vetores como lados do paralelogramo. Assim, a magnitude da área do paralelogramo que possui dois vetores perpendiculares como lado é o produto do seu comprimento. En matemàtiques, el producte vectorial o producte extern és una operació entre dos vectors d'un espai euclidià tridimensional orientat que retorna un altre vector ortogonal als dos vectors originals. És diferent doncs, del producte escalar o producte intern que retorna un escalar. Het kruisproduct, vectorproduct, vectorieel product, uitwendig product of uitproduct, niet te verwarren met het Engelse 'outer product', dat een tensorproduct is, van twee vectoren in drie dimensies is een vector die loodrecht staat op beide vectoren, en waarvan de grootte gelijk is aan het product van de groottes van de beide vectoren en de sinus van de hoek tussen de twee vectoren. De richting van het kruisproduct wordt vastgelegd door de kurkentrekker- of de rechterhandregel. In tegenstelling tot het inwendig product, is het kruisproduct geen scalair, maar een vector.
gold:hypernym
dbr:Operation
prov:wasDerivedFrom
wikipedia-en:Cross_product?oldid=1124312298&ns=0
dbo:wikiPageLength
75919
foaf:isPrimaryTopicOf
wikipedia-en:Cross_product