Neural Networks (also referred to as connectionist systems) are a computational approach which is based on a large collection of neural units loosely modeling the way the brain solves problems with large clusters of biological neurons connected by axons. Each neural unit is connected with many others, and links can be enforcing or inhibitory in their effect on the activation state of connected neural units. Each individual neural unit may have a summation function which combines the values of all its inputs together. There may be a threshold function or limiting function on each connection and on the unit itself such that it must surpass it before it can propagate to other neurons. These systems are self-learning and trained rather than explicitly programmed and excel in areas where the so

Property Value
dbo:abstract
  • Neural Networks (also referred to as connectionist systems) are a computational approach which is based on a large collection of neural units loosely modeling the way the brain solves problems with large clusters of biological neurons connected by axons. Each neural unit is connected with many others, and links can be enforcing or inhibitory in their effect on the activation state of connected neural units. Each individual neural unit may have a summation function which combines the values of all its inputs together. There may be a threshold function or limiting function on each connection and on the unit itself such that it must surpass it before it can propagate to other neurons. These systems are self-learning and trained rather than explicitly programmed and excel in areas where the solution or feature detection is difficult to express in a traditional computer program. Neural networks typically consist of multiple layers or a cube design, and the signal path traverses from front to back. Back propagation is where the forward stimulation is used to reset weights on the "front" neural units and this is sometimes done in combination with training where the correct result is known. More modern networks are a bit more free flowing in terms of stimulation and inhibition with connections interacting in a much more chaotic and complex fashion. Dynamic neural networks are the most advanced in that they dynamically can based on rules form new connections and even new neural units while disabling others. The goal of the neural network is to solve problems in the same way that the human brain would, although several neural networks are much more abstract. Modern neural network projects typically work with a few thousand to a few million neural units and millions of connections, which is still several orders of magnitude less complex than the human brain and closer to the computing power of a worm. New brain research often stimulates new patterns in neural networks. One new approach is using connections which span much further and link processing layers rather than always being localized to adjacent neurons. Other research being explored with the different types of signal over time that axons propagate which is more complex than simply on or off. Neural networks are based on real numbers, with the value of the core and of the axon typically being a representation between 0.0 and 1. An interesting facet of these systems is that they are unpredictable in their success with self learning. After training some become great problem solvers and others don't perform as well. In order to train them several thousand cycles of interaction typically occur. Like other machine learning methods – systems that learn from data – neural networks have been used to solve a wide variety of tasks, like computer vision and speech recognition, that are hard to solve using ordinary rule-based programming. Historically, the use of neural network models marked a directional shift in the late eighties from high-level (symbolic) artificial intelligence, characterized by expert systems with knowledge embodied in if-then rules, to low-level (sub-symbolic) machine learning, characterized by knowledge embodied in the parameters of a dynamical system. (en)
  • الشبكات العصبونية الاصطناعية (بالإنجليزية: artificial neural network ANN) أو ما يدعى أيضا بالشبكات العصبونية المحاكية simulated neural network أو SNN : مجموعة مترابطة من عصبونات افتراضية تنشئها برامج حاسوبية لتشابه عمل العصبون البيولوجي أو بنى إلكترونية (شيبات إلكترونية مصممة لمحاكاة عمل العصبونات) تستخدم النموذج الرياضي لمعالجة المعلومات بناء على الطريقة الاتصالية في الحوسبة. تتألف الشبكات العصبونية بشكل عام عناصر معالجة بسيطة تقوم بعمل بسيط لكن السلوك الكلي للشبكة يتحدد من خلال الاتصالات بين مختلف هذه العناصر التي تدعى هنا بالعصبونات ومؤشرات هذه العناصر element parameters. الإيحاء الأول بفكرة الشبكات العصبونية أتى من آلية عمل العصبونات الدماغية التي يمكن تشبيهها بشبكات بيولوجية كهربائية لمعالجة المعلومات الواردة إلى الدماغ. في هذه الشبكات اقترح دونالد هب أن المشبك العصبي يلعب دورا أساسيا في توجيه عملية المعالجة وهذا ما دفع للتفكير في فكرة الاتصالية والشبكات العصبونية الاصطناعية. تتالف الشبكات العصبونية الاصطناعية من عقد أو ما قد ذكرنا مسبقا انه عصبونات neurons أو وحدات معالجة processing elements، متصلة معا لتشكل شبكة من العقد، وكل اتصال بين هذه العقد يملك مجموعة من القيم تدعى الأوزان تسهم في تحديد القيم الناتجة عن كل عنصر معالجة بناء على القيم الداخلة لهذا العنصر. (ar)
  • Künstliche neuronale Netze, auch künstliche neuronale Netzwerke, kurz: KNN (engl. ANN, artificial neural network), sind Netze aus künstlichen Neuronen. Sie sind Forschungsgegenstand der Neuroinformatik und stellen einen Zweig der künstlichen Intelligenz dar. Die künstlichen neuronalen Netze haben, ebenso wie künstliche Neuronen, ein biologisches Vorbild. Man stellt sie den natürlichen neuronalen Netzen gegenüber, welche Nervenzellvernetzungen im Gehirn und im Rückenmark bilden. Doch geht es mehr um eine Abstraktion (Modellbildung) von Informationsverarbeitung und weniger um das Nachbilden biologischer neuronaler Netze, was eher Gegenstand der Computational Neuroscience ist. (de)
  • Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: "ANN") son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso biológico. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales. (es)
  • Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un ensemble d'algorithmes dont la conception est à l'origine très schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d’apprentissage de type probabiliste, en particulier bayésien. Ils sont placés d’une part dans la famille des applications statistiques, qu’ils enrichissent avec un ensemble de paradigmes permettant de créer des classifications rapides (réseaux de Kohonen en particulier), et d’autre part dans la famille des méthodes de l’intelligence artificielle auxquelles ils fournissent un mécanisme perceptif indépendant des idées propres de l'implémenteur, et fournissant des informations d'entrée au raisonnement logique formel (voir Deep Learning). En modélisation des circuits biologiques, ils permettent de tester quelques hypothèses fonctionnelles issues de la neurophysiologie, ou encore les conséquences de ces hypothèses pour les comparer au réel. (fr)
  • ニューラルネットワーク(神経回路網、英: neural network, NN)は、脳機能に見られるいくつかの特性を計算機上のシミュレーションによって表現することを目指した数学モデルである。研究の源流は生体の脳のモデル化であるが、神経科学の知見の改定などにより次第に脳モデルとは乖離が著しくなり、生物学や神経科学との区別のため、人工ニューラルネットワーク(人工神経回路網、英: artificial neural network, ANN)とも呼ばれる。 (ja)
  • Nel campo dell'apprendimento automatico, una rete neurale artificiale (in inglese artificial neural network - ANN) è un modello matematico composto di "neuroni" artificiali, che si ispira a una rete neurale. Questi modelli matematici possono essere utilizzati sia per ottenere una comprensione delle reti neurali biologiche, ma ancor di più per risolvere problemi ingegneristici di intelligenza artificiale come quelli che si pongono in diversi ambiti tecnologici (in elettronica, informatica, simulazione, e altre discipline). Una rete neurale artificiale può essere realizzata sia da programmi software che da hardware dedicato (DSP, Digital Signal Processing). Questa branca può essere utilizzata in congiunzione alla logica fuzzy. (it)
  • Sieć neuronowa (sztuczna sieć neuronowa) – ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych modeli, realizujących obliczenia lub przetwarzanie sygnałów poprzez rzędy elementów, zwanych sztucznymi neuronami, wykonujących pewną podstawową operację na swoim wejściu. Oryginalną inspiracją takiej struktury była budowa naturalnych neuronów, łączących je synaps, oraz układów nerwowych, w szczególności mózgu. Czasem nazwą sztuczne sieci neuronowe określa się interdyscyplinarną dziedzinę wiedzy zajmującą się konstrukcją, trenowaniem i badaniem możliwości tego rodzaju sieci. (pl)
  • Em ciência da computação e campos relacionados, redes neurais artificiais (RNAs) são modelos computacionais inspirados pelo sistema nervoso central de um animal (em particular o cérebro) que são capazes de realizar o aprendizado de máquina bem como o reconhecimento de padrões. Redes neurais artificias geralmente são apresentadas como sistemas de "neurônios interconectados que podem computar valores de entradas". Por exemplo, uma rede neural para o reconhecimento de escrita manual é definida por um conjunto de neurônios de entrada que podem ser ativados pelos pixels de uma imagem de entrada. As ativações desses neurônios são então repassadas​​, ponderadas e transformadas por uma função determinada pelo designer da rede, a outros neurônios. Este processo é repetido até que, finalmente, um neurônio de saída é ativado. Isso determina que caractere foi lido. Assim como outros métodos de aprendizado de máquina, sistemas que aprendem a partir dos dados, redes neurais têm sido usadas para resolver uma grande variedade de tarefas que são difíceis de resolver utilizando programação baseada em regras comuns, incluindo visão computacional e reconhecimento de voz. (pt)
  • Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др. ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи. * С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. * С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. * С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. * С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма. * А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов. Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных. (ru)
  • 在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或類神經網絡,是一种模仿生物神经网络(动物的中樞神經系統,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分: * 结构 (Architecture) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。 * 激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。 * 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。 例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激發。在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。这个过程不断重复,直到输出神经元被激發。最后,输出神经元的激励值决定了识别出来的是哪个字母。 神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如机器视觉和语音识别。这些问题都是很难被传统基于规则的编程所解决的。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21523 (xsd:integer)
dbo:wikiPageRevisionID
  • 744760022 (xsd:integer)
dct:subject
http://purl.org/linguistics/gold/hypernym
rdf:type
rdfs:comment
  • Künstliche neuronale Netze, auch künstliche neuronale Netzwerke, kurz: KNN (engl. ANN, artificial neural network), sind Netze aus künstlichen Neuronen. Sie sind Forschungsgegenstand der Neuroinformatik und stellen einen Zweig der künstlichen Intelligenz dar. Die künstlichen neuronalen Netze haben, ebenso wie künstliche Neuronen, ein biologisches Vorbild. Man stellt sie den natürlichen neuronalen Netzen gegenüber, welche Nervenzellvernetzungen im Gehirn und im Rückenmark bilden. Doch geht es mehr um eine Abstraktion (Modellbildung) von Informationsverarbeitung und weniger um das Nachbilden biologischer neuronaler Netze, was eher Gegenstand der Computational Neuroscience ist. (de)
  • Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: "ANN") son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso biológico. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales. (es)
  • ニューラルネットワーク(神経回路網、英: neural network, NN)は、脳機能に見られるいくつかの特性を計算機上のシミュレーションによって表現することを目指した数学モデルである。研究の源流は生体の脳のモデル化であるが、神経科学の知見の改定などにより次第に脳モデルとは乖離が著しくなり、生物学や神経科学との区別のため、人工ニューラルネットワーク(人工神経回路網、英: artificial neural network, ANN)とも呼ばれる。 (ja)
  • Sieć neuronowa (sztuczna sieć neuronowa) – ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych modeli, realizujących obliczenia lub przetwarzanie sygnałów poprzez rzędy elementów, zwanych sztucznymi neuronami, wykonujących pewną podstawową operację na swoim wejściu. Oryginalną inspiracją takiej struktury była budowa naturalnych neuronów, łączących je synaps, oraz układów nerwowych, w szczególności mózgu. Czasem nazwą sztuczne sieci neuronowe określa się interdyscyplinarną dziedzinę wiedzy zajmującą się konstrukcją, trenowaniem i badaniem możliwości tego rodzaju sieci. (pl)
  • Neural Networks (also referred to as connectionist systems) are a computational approach which is based on a large collection of neural units loosely modeling the way the brain solves problems with large clusters of biological neurons connected by axons. Each neural unit is connected with many others, and links can be enforcing or inhibitory in their effect on the activation state of connected neural units. Each individual neural unit may have a summation function which combines the values of all its inputs together. There may be a threshold function or limiting function on each connection and on the unit itself such that it must surpass it before it can propagate to other neurons. These systems are self-learning and trained rather than explicitly programmed and excel in areas where the so (en)
  • الشبكات العصبونية الاصطناعية (بالإنجليزية: artificial neural network ANN) أو ما يدعى أيضا بالشبكات العصبونية المحاكية simulated neural network أو SNN : مجموعة مترابطة من عصبونات افتراضية تنشئها برامج حاسوبية لتشابه عمل العصبون البيولوجي أو بنى إلكترونية (شيبات إلكترونية مصممة لمحاكاة عمل العصبونات) تستخدم النموذج الرياضي لمعالجة المعلومات بناء على الطريقة الاتصالية في الحوسبة. تتألف الشبكات العصبونية بشكل عام عناصر معالجة بسيطة تقوم بعمل بسيط لكن السلوك الكلي للشبكة يتحدد من خلال الاتصالات بين مختلف هذه العناصر التي تدعى هنا بالعصبونات ومؤشرات هذه العناصر element parameters. الإيحاء الأول بفكرة الشبكات العصبونية أتى من آلية عمل العصبونات الدماغية التي يمكن تشبيهها بشبكات بيولوجية كهربائية لمعالجة المعلومات الواردة إلى الدماغ. في هذه الشبكات اقترح دونالد هب أن المشبك العصبي يلعب دورا أساسيا (ar)
  • Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un ensemble d'algorithmes dont la conception est à l'origine très schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. En modélisation des circuits biologiques, ils permettent de tester quelques hypothèses fonctionnelles issues de la neurophysiologie, ou encore les conséquences de ces hypothèses pour les comparer au réel. (fr)
  • Nel campo dell'apprendimento automatico, una rete neurale artificiale (in inglese artificial neural network - ANN) è un modello matematico composto di "neuroni" artificiali, che si ispira a una rete neurale. Questi modelli matematici possono essere utilizzati sia per ottenere una comprensione delle reti neurali biologiche, ma ancor di più per risolvere problemi ingegneristici di intelligenza artificiale come quelli che si pongono in diversi ambiti tecnologici (in elettronica, informatica, simulazione, e altre discipline). (it)
  • Em ciência da computação e campos relacionados, redes neurais artificiais (RNAs) são modelos computacionais inspirados pelo sistema nervoso central de um animal (em particular o cérebro) que são capazes de realizar o aprendizado de máquina bem como o reconhecimento de padrões. Redes neurais artificias geralmente são apresentadas como sistemas de "neurônios interconectados que podem computar valores de entradas". (pt)
  • Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др. (ru)
  • 在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或類神經網絡,是一种模仿生物神经网络(动物的中樞神經系統,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分: * 结构 (Architecture) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。 * 激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。 * 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。 (zh)
rdfs:label
  • Artificial neural network (en)
  • شبكة عصبونية اصطناعية (ar)
  • Künstliches neuronales Netz (de)
  • Red neuronal artificial (es)
  • Réseau de neurones artificiels (fr)
  • Rete neurale artificiale (it)
  • ニューラルネットワーク (ja)
  • Sieć neuronowa (pl)
  • Rede neural artificial (pt)
  • Искусственная нейронная сеть (ru)
  • 人工神经网络 (zh)
rdfs:seeAlso
owl:sameAs
skos:closeMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:field of
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbp:synthesisType of
is foaf:primaryTopic of