An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In artificial intelligence, eager learning is a learning method in which the system tries to construct a general, input-independent target function during training of the system, as opposed to lazy learning, where generalization beyond the training data is delayed until a query is made to the system.The main advantage gained in employing an eager learning method, such as an artificial neural network, is that the target function will be approximated globally during training, thus requiring much less space than using a lazy learning system. Eager learning systems also deal much better with noise in the training data. Eager learning is an example of offline learning, in which post-training queries to the system have no effect on the system itself, and thus the same query to the system will al

Property Value
dbo:abstract
  • Eager learning (engl., „Eifriges Lernen“) ist eine Klasse von maschinellen Lernverfahren. Im Gegensatz zum lazy learning findet dabei die Modellbildung offline einmalig auf Basis der Trainingsdaten statt, und nicht online zur Zeit der Anfrage. Der Vorteil ist, dass dadurch zwar die Zeit des Trainierens durch die Modellbildung verlängert wird, aber die Abfragezeit deutlich verkürzt wird. Im Gegensatz zum lazy learning kann dabei allerdings die Modellbildung stets nur global über den kompletten Trainingsdatensatz erfolgen, nicht lokal um den Arbeitspunkt, da dieser zum Zeitpunkt des Trainierens/Lernens nicht bekannt ist. (de)
  • In artificial intelligence, eager learning is a learning method in which the system tries to construct a general, input-independent target function during training of the system, as opposed to lazy learning, where generalization beyond the training data is delayed until a query is made to the system.The main advantage gained in employing an eager learning method, such as an artificial neural network, is that the target function will be approximated globally during training, thus requiring much less space than using a lazy learning system. Eager learning systems also deal much better with noise in the training data. Eager learning is an example of offline learning, in which post-training queries to the system have no effect on the system itself, and thus the same query to the system will always produce the same result. The main disadvantage with eager learning is that it is generally unable to provide good local approximations in the target function. (en)
  • Em Inteligência Artificial, a Eager Learning (engl., Aprendizagem Ansiosa) é um método de aprendizagem em que o sistema tenta implementar a generalização antes de o sistema receber o input sendo assim independente da função alvo, o contrário acontece com a Aprendizagem Preguiçosa, onde neste caso essa generalização é feita após o sistema receber o input. A grande vantagem neste método, tal como nas Redes Neurais Artificiais, é que a função alvo é aproximada globalmente durante o treino, requerendo muito menos espaço que o método de aprendizagem preguiçosa. A aprendizagem ansiosa trata muito melhor os dados do treino que tenham instâncias desnecessárias. Esta aprendizagem é um exemplo de (Offline Learning), em que a sua aproximação não varia consoante a função alvo, isto significa que o mesmo input ao sistema resulta sempre no mesmo resultado. A desvantagem da aprendizagem ansiosa é que, de modo geral, não é capaz de fornecer uma boa aproximação local na função alvo. (pt)
dbo:wikiPageID
  • 10747995 (xsd:integer)
dbo:wikiPageLength
  • 1489 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119677655 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In artificial intelligence, eager learning is a learning method in which the system tries to construct a general, input-independent target function during training of the system, as opposed to lazy learning, where generalization beyond the training data is delayed until a query is made to the system.The main advantage gained in employing an eager learning method, such as an artificial neural network, is that the target function will be approximated globally during training, thus requiring much less space than using a lazy learning system. Eager learning systems also deal much better with noise in the training data. Eager learning is an example of offline learning, in which post-training queries to the system have no effect on the system itself, and thus the same query to the system will al (en)
  • Eager learning (engl., „Eifriges Lernen“) ist eine Klasse von maschinellen Lernverfahren. Im Gegensatz zum lazy learning findet dabei die Modellbildung offline einmalig auf Basis der Trainingsdaten statt, und nicht online zur Zeit der Anfrage. Der Vorteil ist, dass dadurch zwar die Zeit des Trainierens durch die Modellbildung verlängert wird, aber die Abfragezeit deutlich verkürzt wird. (de)
  • Em Inteligência Artificial, a Eager Learning (engl., Aprendizagem Ansiosa) é um método de aprendizagem em que o sistema tenta implementar a generalização antes de o sistema receber o input sendo assim independente da função alvo, o contrário acontece com a Aprendizagem Preguiçosa, onde neste caso essa generalização é feita após o sistema receber o input. A desvantagem da aprendizagem ansiosa é que, de modo geral, não é capaz de fornecer uma boa aproximação local na função alvo. (pt)
rdfs:label
  • Eager learning (de)
  • Eager learning (en)
  • Eager Learning (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License