An Entity of Type: WikicatProbabilityDistributions, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of successes in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of failures (denoted r) occurs. For example, we can define rolling a 6 on a die as a failure, and rolling any other number as a success, and ask how many successful rolls will occur before we see the third failure (r = 3). In such a case, the probability distribution of the number of non-6s that appear will be a negative binomial distribution. We could similarly use the negative binomial distribution to model the number of days a certain machine works before it breaks down (r = 1).

Property Value
dbo:abstract
  • Η αρνητική διωνυμική κατανομή είναι μια διακριτή συνάρτηση κατανομής τυχαίας μεταβλητής.Περιγράφει ένα τυχαίο πείραμα με δυο πιθανά αποτελέσματα (επιτυχία - αποτυχία) και πιθανότητα επιτυχίας p που επαναλαμβάνεται μέχρι να έχουμε r επιτυχίες. Θεωρούμε την τυχαία μεταβλητή Χ που εκφράζει τον αριθμό των αποτυχιών. Συνολικά επαναλαμβάνουμε το πείραμα r+k φορές, από τις οποίες η τελευταία είναι επιτυχία.Η πιθανότητα εως ότου να έχουμε r επιτυχίες να έχουμε k αποτυχίες σε ανεξάρτητα πειράματα με πιθανότητα επιτυχίας p κάθε φορά είναι: . Αυτό το λήμμα μαθηματικών χρειάζεται επέκταση. Βοηθήστε τη Βικιπαίδεια επεκτείνοντάς το! (el)
  • Die negative Binomialverteilung (auch Pascal-Verteilung) ist eine univariate Wahrscheinlichkeitsverteilung. Sie zählt zu den diskreten Wahrscheinlichkeitsverteilungen und ist eine der drei Panjer-Verteilungen. Sie beschreibt die Anzahl der Versuche, die erforderlich sind, um in einem Bernoulli-Prozess eine vorgegebene Anzahl von Erfolgen zu erzielen. Neben der Poisson-Verteilung ist die negative Binomialverteilung die wichtigste Schadenzahlverteilung in der Versicherungsmathematik. Dort wird sie insbesondere als Schadenzahlverteilung in der Krankenversicherung benutzt, seltener im Bereich Kraftfahrzeug-Haftpflicht oder Kasko. (de)
  • Probabilitate teorian eta estatistikan, banaketa binomial negatiboa Bernoulliren prozesu batean r-garren baiezko edo arrakasta izan arte, r finko baterako, suertaturiko ezezko edo porroten kopuruaren probabilitate banaketa da. Banakuntza binomial negatiboaren probabilitate-funtzioa hau da: Labur, zorizko aldagai batek banaketa binomial negatiboari jarraitzen diola honela adierazten da, r eta p parametroak zehaztuz: (eu)
  • En teoría de probabilidad y estadística, la Distribución Binomial Negativa es una distribución de probabilidad discreta que incluye a la distribución de Pascal. Es una ampliación de las distribuciones geométricas, utilizada en procesos en los cuales se ve necesaria la repetición de ensayos hasta conseguir un número de casos favorables (primer éxito). La Distribución Binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de ensayos de Bernoulli independientes entre sí, con una probabilidad de ocurrencia de éxitos en los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, es decir, sólo son posibles dos resultados (A y no A). Una variable aleatoria geométrica corresponde al número de ensayos Bernoulli necesarios para obtener el primer éxito. Si deseamos conocer el número de estos para conseguir n éxitos, la variable aleatoria es binomial negativa. El número de experimentos de Bernoulli de parámetro independientes realizados hasta la consecución del -ésimo éxito es una variable aleatoria que tiene una distribución binomial negativa con parámetros y . La distribución geométrica es el caso concreto de la binomial negativa cuando . (es)
  • In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of successes in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of failures (denoted r) occurs. For example, we can define rolling a 6 on a die as a failure, and rolling any other number as a success, and ask how many successful rolls will occur before we see the third failure (r = 3). In such a case, the probability distribution of the number of non-6s that appear will be a negative binomial distribution. We could similarly use the negative binomial distribution to model the number of days a certain machine works before it breaks down (r = 1). "Success" and "failure" are arbitrary terms that are sometimes swapped. We could just as easily say that the negative binomial distribution is the distribution of the number of failures before r successes. When applied to real-world problems, outcomes of success and failure may or may not be outcomes we ordinarily view as good and bad, respectively. This article is inconsistent in its use of these terms, so the reader should be careful to identify which outcome can vary in number of occurrences and which outcome stops the sequence of trials. The article may also use p (the probability of one of the outcomes in any given Bernoulli trial) inconsistently. The Pascal distribution (after Blaise Pascal) and Polya distribution (for George Pólya) are special cases of the negative binomial distribution. A convention among engineers, climatologists, and others is to use "negative binomial" or "Pascal" for the case of an integer-valued stopping-time parameter r, and use "Polya" for the real-valued case. For occurrences of associated discrete events, like tornado outbreaks, the Polya distributions can be used to give more accurate models than the Poisson distribution by allowing the mean and variance to be different, unlike the Poisson. The negative binomial distribution has a variance , with the distribution becoming identical to Poisson in the limit for a given mean . This can make the distribution a useful overdispersed alternative to the Poisson distribution, for example for a robust modification of Poisson regression. In epidemiology it has been used to model disease transmission for infectious diseases where the likely number of onward infections may vary considerably from individual to individual and from setting to setting. More generally it may be appropriate where events have positively correlated occurrences causing a larger variance than if the occurrences were independent, due to a positive covariance term. The term "negative binomial" is likely due to the fact that a certain binomial coefficient that appears in the formula for the probability mass function of the distribution can be written more simply with negative numbers. (en)
  • En probabilité et en statistiques, la loi binomiale négative est une distribution de probabilité discrète. Elle décrit la situation suivante : une expérience consiste en une série de tirages indépendants, donnant un « succès » avec probabilité p (constante durant toute l'expérience) et un « échec » avec une probabilité complémentaire. Cette expérience se poursuit jusqu'à l'obtention d'un nombre donné n de succès. La variable aléatoire représentant le nombre d'échecs (avant l'obtention du nombre donné n de succès) suit alors une loi binomiale négative. Ses paramètres sont n, le nombre de succès attendus, et p, la probabilité d'un succès. La loi se généralise à deux paramètres r et p, où r peut prendre des valeurs réelles strictement positives. Cette généralisation est aussi connue sous le nom de loi de Pólya, en l'honneur du mathématicien George Pólya. (fr)
  • In teoria delle probabilità la distribuzione di Pascal è una distribuzione di probabilità discreta con due parametri, ed , che descrive il numero di fallimenti precedenti il successo n-esimo in un processo di Bernoulli di parametro p. A volte si considera la distribuzione di Pascal come quella distribuzione che descrive il numero di prove necessarie per ottenere n successi. Questa distribuzione è equivalente alla precedente ma riscalata, ovvero descrive una variabile aleatoria anziché . Ad esempio, lanciando una moneta fino ad ottenere 3 volte testa, la distribuzione di Pascal descrive le probabilità per il numero di risultati croce visti nel frattempo. La distribuzione prende il nome dal matematico francese Blaise Pascal. Questa distribuzione di probabilità può essere generalizzata sostituendo il numero naturale n con un numero reale positivo r. In questo caso viene detta anche distribuzione binomiale negativa (per la sua particolare formula) o di Polya (dal matematico ungherese George Polya). (it)
  • 負の二項分布(ふのにこうぶんぷ、英: negative binomial distribution)は、離散確率分布の一つ。確率 p で成功する独立なベルヌーイ試行が繰り返された時の成功回数の分布を表すという意味で二項分布によく似ているが、負の二項分布では試行回数があらかじめ決められておらず、r 回の失敗が起こるまで試行が続けられる。たとえば、コインを 5 回投げた時に表が出る回数は二項分布に従うが、5 回表が出るまでコインを投げ続けた時に裏が出る回数は負の二項分布に従う。 (ja)
  • In de kansrekening is de negatief-binomiale verdeling een discrete kansverdeling. Het is de kansverdeling van het benodigde aantal onafhankelijke pogingen met steeds kans p op succes, om een vastgelegd aantal successen m te behalen. Als we een reeks onafhankelijke Bernoulli-pogingen doen met succeskans p, kunnen we een vast aantal beschouwen, zodat we maar moeten afwachten hoe vaak we succes zullen hebben. Dit leidt tot de binomiale verdeling. Gaan we echter net zo lang door tot we voor de m-de keer succes hebben, dan moeten we maar afwachten hoe veel experimenten we moeten doen. Dat aantal, N, is een stochastische variabele met als verdeling de negatief-binomiale verdeling, gegeven door: , voor n=m,m+1,m+2,m+3, ... Eenvoudig is in te zien dat deze kans ontstaat doordat er m successen moeten zijn, elk met kans p, en van de n-1 pogingen die aan het laatste succes voorafgaan er n-m mislukkingen, elk met kans 1-p. De binomiaalcoëfficiënt geeft het aantal mogelijkheden voor de verdeling van de m-1 successen over de n-1 pogingen voorafgaand aan de laatste. (nl)
  • Rozkład Pascala (ujemny rozkład dwumianowy) – dyskretny rozkład prawdopodobieństwa opisujący m.in. liczbę sukcesów i porażek w niezależnych i posiadających równe prawdopodobieństwo sukcesu próbach Bernoulliego. Jest uogólnieniem rozkładu geometrycznego dla wielu prób. Termin „ujemny rozkład dwumianowy” nie jest w pełni usystematyzowany. Może dotyczyć jednego z kilku wariantów funkcji opisujących te same zmienne losowe z subtelnymi różnicami w parametryzacji – liczby prób, albo sukcesów lub porażek (czasem liczonych bez ostatniego), przy określonej wartości jednej z tych zmiennych. Momenty i inne charakterystyki poszczególnych wersji rozkładu różnią o proste transformacje. Nazwa „rozkład Pascala” opisuje z reguły warianty dla wartości całkowitych, liczonych bez ostatniego zdarzenia. (pl)
  • A distribuição binomial negativa ou distribuição de Pascal é uma distribuição de probabilidade discreta. Esta distribuição indica o número de tentativas necessárias para obter k sucessos de igual probabilidade θ ao fim de n experimentos de Bernoulli, sendo a última tentativa um sucesso. A sua função de probabilidade é dada por: Numa linha de montagem, 10% das peças são defeituosas. A probabilidade de a quinta peça que se analisa ser a segunda defeituosa é OBS.: A distribuição geométrica é fortemente relacionada com a distribuição binomial negativa. Naquela, queremos o número de tentativas para obter o primeiro sucesso, i.e., o tempo de espera até que se tenha o evento de importância ou sucesso. (pt)
  • Отрица́тельное биномиа́льное распределе́ние, также называемое распределением Паскаля — это распределение дискретной случайной величины, равной числу произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха , проводимых до -го успеха. (ru)
  • Den negativa binomialfördelningen är en diskret sannolikhetsfördelning av antalet framgångar eller antalet försök i en sekvens av oberoende och identiskt fördelade Bernoulliförsök innan ett specificerat (icke-slumpmässigt) antal misslyckanden (betecknat r ) inträffar. (sv)
  • Від’ємний біноміальний розподіл в теорії імовірностей — розподіл дискретної випадкової величини, рівної кількості невдач в послідовності випробувань Бернуллі з імовірністю успіху , проведеній до -го успіху. (uk)
  • 負二項分布(Negative binomial distribution)是統計學上一種描述在一系列独立同分布的伯努利试验中,成功次数到达指定次数(记为r)时失败次数的離散概率分布。比如,如果我们定义掷骰子随机变量x值为x=1时为成功,所有x≠1为失败,这时我们反复掷骰子直到1出现3次(成功次数r=3),此时非1数字出现次数的概率分布即为负二项分布。 帕斯卡分布(Pascal distribution,来自Blaise Pascal)和波利亚分布(Polya distribution,又称罐子模型,来自George Pólya)均是负二项分布的特例。在工程,气候等领域中经常用“负二项分布”或“帕斯卡分布”来描述变量r为整数的情况,而使用“波利亚分布”来描述r取到实数值R的情况。 对于“传染性的”("contagious")的离散事件,例如龙卷风爆发,相比泊松分布,波利亚分布由于允许其平均值和方差不同,而能够给出更精确的模型。“传染性”的事件中,如果事件发生率相互独立,其发生率间的正相关性(即发生率间存在正协方差项)会导致变量分布有更大的方差。 “负二项分布”与“二项分布”的区别在于:“二项分布”是固定试验总次数N的独立试验中,成功次数k的分布;而“负二项分布”是所有到r次成功时即终止的独立试验中,失败次数k的分布。 (zh)
dbo:wikiPageID
  • 45177 (xsd:integer)
dbo:wikiPageLength
  • 42984 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1052082112 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • May 2021 (en)
dbp:reason
  • The chosen parameterization throughout the article is inconsistent and therefore makes the article unnecessarily confusing. Compare this with the definition of the PMF given in the box at the top of the page. (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Probabilitate teorian eta estatistikan, banaketa binomial negatiboa Bernoulliren prozesu batean r-garren baiezko edo arrakasta izan arte, r finko baterako, suertaturiko ezezko edo porroten kopuruaren probabilitate banaketa da. Banakuntza binomial negatiboaren probabilitate-funtzioa hau da: Labur, zorizko aldagai batek banaketa binomial negatiboari jarraitzen diola honela adierazten da, r eta p parametroak zehaztuz: (eu)
  • 負の二項分布(ふのにこうぶんぷ、英: negative binomial distribution)は、離散確率分布の一つ。確率 p で成功する独立なベルヌーイ試行が繰り返された時の成功回数の分布を表すという意味で二項分布によく似ているが、負の二項分布では試行回数があらかじめ決められておらず、r 回の失敗が起こるまで試行が続けられる。たとえば、コインを 5 回投げた時に表が出る回数は二項分布に従うが、5 回表が出るまでコインを投げ続けた時に裏が出る回数は負の二項分布に従う。 (ja)
  • Отрица́тельное биномиа́льное распределе́ние, также называемое распределением Паскаля — это распределение дискретной случайной величины, равной числу произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха , проводимых до -го успеха. (ru)
  • Den negativa binomialfördelningen är en diskret sannolikhetsfördelning av antalet framgångar eller antalet försök i en sekvens av oberoende och identiskt fördelade Bernoulliförsök innan ett specificerat (icke-slumpmässigt) antal misslyckanden (betecknat r ) inträffar. (sv)
  • Від’ємний біноміальний розподіл в теорії імовірностей — розподіл дискретної випадкової величини, рівної кількості невдач в послідовності випробувань Бернуллі з імовірністю успіху , проведеній до -го успіху. (uk)
  • 負二項分布(Negative binomial distribution)是統計學上一種描述在一系列独立同分布的伯努利试验中,成功次数到达指定次数(记为r)时失败次数的離散概率分布。比如,如果我们定义掷骰子随机变量x值为x=1时为成功,所有x≠1为失败,这时我们反复掷骰子直到1出现3次(成功次数r=3),此时非1数字出现次数的概率分布即为负二项分布。 帕斯卡分布(Pascal distribution,来自Blaise Pascal)和波利亚分布(Polya distribution,又称罐子模型,来自George Pólya)均是负二项分布的特例。在工程,气候等领域中经常用“负二项分布”或“帕斯卡分布”来描述变量r为整数的情况,而使用“波利亚分布”来描述r取到实数值R的情况。 对于“传染性的”("contagious")的离散事件,例如龙卷风爆发,相比泊松分布,波利亚分布由于允许其平均值和方差不同,而能够给出更精确的模型。“传染性”的事件中,如果事件发生率相互独立,其发生率间的正相关性(即发生率间存在正协方差项)会导致变量分布有更大的方差。 “负二项分布”与“二项分布”的区别在于:“二项分布”是固定试验总次数N的独立试验中,成功次数k的分布;而“负二项分布”是所有到r次成功时即终止的独立试验中,失败次数k的分布。 (zh)
  • Η αρνητική διωνυμική κατανομή είναι μια διακριτή συνάρτηση κατανομής τυχαίας μεταβλητής.Περιγράφει ένα τυχαίο πείραμα με δυο πιθανά αποτελέσματα (επιτυχία - αποτυχία) και πιθανότητα επιτυχίας p που επαναλαμβάνεται μέχρι να έχουμε r επιτυχίες. Θεωρούμε την τυχαία μεταβλητή Χ που εκφράζει τον αριθμό των αποτυχιών. Συνολικά επαναλαμβάνουμε το πείραμα r+k φορές, από τις οποίες η τελευταία είναι επιτυχία.Η πιθανότητα εως ότου να έχουμε r επιτυχίες να έχουμε k αποτυχίες σε ανεξάρτητα πειράματα με πιθανότητα επιτυχίας p κάθε φορά είναι: . (el)
  • Die negative Binomialverteilung (auch Pascal-Verteilung) ist eine univariate Wahrscheinlichkeitsverteilung. Sie zählt zu den diskreten Wahrscheinlichkeitsverteilungen und ist eine der drei Panjer-Verteilungen. Sie beschreibt die Anzahl der Versuche, die erforderlich sind, um in einem Bernoulli-Prozess eine vorgegebene Anzahl von Erfolgen zu erzielen. (de)
  • En teoría de probabilidad y estadística, la Distribución Binomial Negativa es una distribución de probabilidad discreta que incluye a la distribución de Pascal. Es una ampliación de las distribuciones geométricas, utilizada en procesos en los cuales se ve necesaria la repetición de ensayos hasta conseguir un número de casos favorables (primer éxito). La Distribución Binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de ensayos de Bernoulli independientes entre sí, con una probabilidad de ocurrencia de éxitos en los ensayos. (es)
  • In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of successes in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of failures (denoted r) occurs. For example, we can define rolling a 6 on a die as a failure, and rolling any other number as a success, and ask how many successful rolls will occur before we see the third failure (r = 3). In such a case, the probability distribution of the number of non-6s that appear will be a negative binomial distribution. We could similarly use the negative binomial distribution to model the number of days a certain machine works before it breaks down (r = 1). (en)
  • En probabilité et en statistiques, la loi binomiale négative est une distribution de probabilité discrète. Elle décrit la situation suivante : une expérience consiste en une série de tirages indépendants, donnant un « succès » avec probabilité p (constante durant toute l'expérience) et un « échec » avec une probabilité complémentaire. Cette expérience se poursuit jusqu'à l'obtention d'un nombre donné n de succès. La variable aléatoire représentant le nombre d'échecs (avant l'obtention du nombre donné n de succès) suit alors une loi binomiale négative. Ses paramètres sont n, le nombre de succès attendus, et p, la probabilité d'un succès. (fr)
  • In teoria delle probabilità la distribuzione di Pascal è una distribuzione di probabilità discreta con due parametri, ed , che descrive il numero di fallimenti precedenti il successo n-esimo in un processo di Bernoulli di parametro p. A volte si considera la distribuzione di Pascal come quella distribuzione che descrive il numero di prove necessarie per ottenere n successi. Questa distribuzione è equivalente alla precedente ma riscalata, ovvero descrive una variabile aleatoria anziché . La distribuzione prende il nome dal matematico francese Blaise Pascal. (it)
  • In de kansrekening is de negatief-binomiale verdeling een discrete kansverdeling. Het is de kansverdeling van het benodigde aantal onafhankelijke pogingen met steeds kans p op succes, om een vastgelegd aantal successen m te behalen. , voor n=m,m+1,m+2,m+3, ... (nl)
  • Rozkład Pascala (ujemny rozkład dwumianowy) – dyskretny rozkład prawdopodobieństwa opisujący m.in. liczbę sukcesów i porażek w niezależnych i posiadających równe prawdopodobieństwo sukcesu próbach Bernoulliego. Jest uogólnieniem rozkładu geometrycznego dla wielu prób. (pl)
  • A distribuição binomial negativa ou distribuição de Pascal é uma distribuição de probabilidade discreta. Esta distribuição indica o número de tentativas necessárias para obter k sucessos de igual probabilidade θ ao fim de n experimentos de Bernoulli, sendo a última tentativa um sucesso. A sua função de probabilidade é dada por: Numa linha de montagem, 10% das peças são defeituosas. A probabilidade de a quinta peça que se analisa ser a segunda defeituosa é (pt)
rdfs:label
  • Negative Binomialverteilung (de)
  • Αρνητική διωνυμική κατανομή (el)
  • Negative binomial distribution (en)
  • Distribución binomial negativa (es)
  • Banaketa binomial negatibo (eu)
  • Loi binomiale négative (fr)
  • Distribuzione di Pascal (it)
  • 負の二項分布 (ja)
  • Negatief-binomiale verdeling (nl)
  • Distribuição binomial negativa (pt)
  • Rozkład Pascala (pl)
  • Отрицательное биномиальное распределение (ru)
  • Negativ binomialfördelning (sv)
  • Від'ємний біноміальний розподіл (uk)
  • 负二项分布 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License