Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/class/yago/WikicatLieGroups
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
rdfs:
subClassOf
yago
:Group100031264
owl:
equivalentClass
yago-res
:wikicat_Lie_groups
is
rdf:
type
of
dbr
:Rotations_in_4-dimensional_Euclidean_space
dbr
:En_(Lie_algebra)
dbr
:One-parameter_group
dbr
:Principal_homogeneous_space
dbr
:Projective_unitary_group
dbr
:Bianchi_classification
dbr
:Homogeneous_space
dbr
:Pauli_matrices
dbr
:Representation_of_a_Lie_group
dbr
:Vector_space
dbr
:Dunkl_operator
dbr
:E7_(mathematics)
dbr
:E7½
dbr
:Indefinite_orthogonal_group
dbr
:Infinitesimal_transformation
dbr
:Invariant_convex_cone
dbr
:Iwasawa_decomposition
dbr
:Iwasawa_manifold
dbr
:Jacobi_group
dbr
:Jacobi_identity
dbr
:Lie's_third_theorem
dbr
:Lie_group
dbr
:Lie_group_decomposition
dbr
:Lie_point_symmetry
dbr
:Lie_product_formula
dbr
:Lie_superalgebra
dbr
:Lie_theory
dbr
:Lie–Palais_theorem
dbr
:Pre-Lie_algebra
dbr
:Complex_reflection_group
dbr
:Complexification_(Lie_group)
dbr
:Continuous_symmetry
dbr
:An_Exceptionally_Simple_Theory_of_Everything
dbr
:Matrix_exponential
dbr
:Maurer–Cartan_form
dbr
:Chevalley_basis
dbr
:Gell-Mann_matrices
dbr
:General_linear_group
dbr
:SL2(R)
dbr
:Classical_group
dbr
:Mutation_(Jordan_algebra)
dbr
:Möbius_transformation
dbr
:Vogel_plane
dbr
:Oppenheim_conjecture
dbr
:Berry–Robbins_problem
dbr
:Lie_algebra
dbr
:Lorentz_group
dbr
:Clifford–Klein_form
dbr
:Compact_group
dbr
:Freudenthal_magic_square
dbr
:Fundamental_representation
dbr
:Identity_component
dbr
:Mostow–Palais_theorem
dbr
:Pin_group
dbr
:Projective_orthogonal_group
dbr
:Quaternion-Kähler_symmetric_space
dbr
:Spin_group
dbr
:Spin_tensor
dbr
:Symmetric_space
dbr
:Symplectic_group
dbr
:Symplectic_representation
dbr
:Weakly_symmetric_space
dbr
:Maximal_compact_subgroup
dbr
:Baker–Campbell–Hausdorff_formula
dbr
:6-j_symbol
dbr
:Ahlfors_finiteness_theorem
dbr
:G2_(mathematics)
dbr
:Haar_measure
dbr
:Heisenberg_group
dbr
:Jet_group
dbr
:Lattice_(discrete_subgroup)
dbr
:Lattice_(group)
dbr
:Affine_group
dbr
:2E6_(mathematics)
dbr
:3D4
dbr
:E6_(mathematics)
dbr
:E8_(mathematics)
dbr
:Charts_on_SO(3)
dbr
:Darboux_derivative
dbr
:Hitchin_system
dbr
:Kostant's_convexity_theorem
dbr
:Length_of_a_Weyl_group_element
dbr
:Group_algebra
dbr
:Projective_linear_group
dbr
:Ratner's_theorems
dbr
:Regular_element_of_a_Lie_algebra
dbr
:Harish-Chandra's_c-function
dbr
:Hilbert's_fifth_problem
dbr
:Adjoint_representation_of_a_Lie_algebra
dbr
:Covering_group
dbr
:Coxeter_element
dbr
:Irrational_winding_of_a_torus
dbr
:Nilmanifold
dbr
:Simple_Lie_group
dbr
:ADE_classification
dbr
:Killing_form
dbr
:Langlands_decomposition
dbr
:Symmetric_cone
dbr
:Einstein_group
dbr
:Hermitian_symmetric_space
dbr
:Maximal_torus
dbr
:Theta_representation
dbr
:Rotation_group_SO(3)
dbr
:Reductive_group
dbr
:Tangent_Lie_group
dbr
:Automorphic_form
dbr
:Borel–de_Siebenthal_theory
dbr
:Ping-pong_lemma
dbr
:Polar_decomposition
dbr
:Special_linear_Lie_algebra
dbr
:Special_unitary_group
dbr
:Circle_group
dbr
:Group_contraction
dbr
:Exponential_map
dbr
:Bruhat_decomposition
dbr
:Orthogonal_group
dbr
:Carnot_group
dbr
:Cartan's_theorem
dbr
:Cartan_decomposition
dbr
:Cartan_subgroup
dbr
:Klein_geometry
dbr
:Kleinian_group
dbr
:SO(5)
dbr
:SO(8)
dbr
:Special_linear_group
dbr
:Schottky_group
dbr
:Schrödinger_group
dbr
:Unitary_group
dbr
:Virasoro_algebra
dbr
:Special_affine_group
dbr
:Triality
dbr
:Euclidean_group
dbr
:F4_(mathematics)
dbr
:Improper_rotation
dbr
:Restricted_root_system
dbr
:Poincaré_group
dbr
:Poisson–Lie_group
dbr
:Real_form_(Lie_theory)
dbr
:Vector_flow
dbr
:Trombi–Varadarajan_theorem
dbr
:Witt_algebra
dbr
:Table_of_Lie_groups
dbr
:Weyl_group
dbr
:Pansu_derivative
dbr
:Representation_ring
dbr
:Semilinear_transformation
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License