Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Maximal compact subgroup
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Concept in topology
Property
Value
dbo:
description
notion mathématique
(fr)
concept in topology
(en)
dbo:
wikiPageExternalLink
http://www.numdam.org/numdam-bin/fitem%3Fid=SB_1948-1951__1__271_0
http://www.numdam.org/numdam-bin/fitem%3Fid=SSL_1954-1955__1__A24_0
https://archive.org/details/liealgebrasandli029541mbp
dbo:
wikiPageWikiLink
dbr
:Killing_form
dbr
:Homotopy_equivalence
dbr
:Topological_group
dbr
:Riemannian_manifold
dbr
:Conjugacy_class
dbr
:Essentially_unique
dbr
:Hadamard_space
dbr
:Circumcenter
dbr
:QR_decomposition
dbr
:Mathematics
dbc
:Lie_groups
dbr
:SL2(R)
dbr
:Algebraic_topology
dbr
:Complexification_(Lie_group)
dbr
:Representation_theory
dbr
:General_linear_group
dbr
:Complex_Lie_group
dbr
:Semisimple_Lie_group
dbc
:Topological_groups
dbr
:Subgroup
dbr
:Subspace_topology
dbr
:Maximal_element
dbr
:Cartan_decomposition
dbr
:Iwasawa_decomposition
dbr
:Complete_metric_space
dbr
:Compact_Lie_group
dbr
:Deformation_retract
dbr
:Locally_compact_group
dbr
:Induced_representation
dbr
:Zonal_spherical_function
dbr
:Compact_space
dbr
:Maximal_subgroup
dbr
:Orthogonal_group
dbr
:Riemannian_symmetric_space
dbr
:Restricted_representation
dbr
:Cartan_involution
dbr
:Circle_group
dbr
:Hyperspecial_subgroup
dbr
:Bruhat-Tits_fixed_point_theorem
dbr
:Inner_product
dbr
:Strictly_convex_function
dbr
:Homotopy_equivalent
dbr
:Homotopy_groups
dbr
:Fixed_point_subgroup
dbr
:Contractible
dbr
:Negative_curvature
dbr
:Gram-Schmidt_process
dbr
:Cartan_fixed_point_theorem
dbp:
wikiPageUsesTemplate
dbt
:Reflist
dbt
:Citation
dbt
:Harvtxt
dbt
:Short_description
dct:
subject
dbc
:Lie_groups
dbc
:Topological_groups
gold:
hypernym
dbr
:K
rdfs:
label
Maximal compact subgroup
(en)
Sous-groupe compact maximal
(fr)
Максимальная компактная подгруппа
(ru)
Максимальна компактна підгрупа
(uk)
极大紧子群
(zh)
owl:
sameAs
yago-res
:Maximal compact subgroup
freebase
:Maximal compact subgroup
wikidata
:Maximal compact subgroup
dbpedia-fr
:Maximal compact subgroup
dbpedia-zh
:Maximal compact subgroup
dbpedia-ru
:Maximal compact subgroup
dbpedia-uk
:Maximal compact subgroup
dbpedia-global
:Maximal compact subgroup
prov:
wasDerivedFrom
wikipedia-en
:Maximal_compact_subgroup?oldid=1285714496&ns=0
foaf:
isPrimaryTopicOf
wikipedia-en
:Maximal_compact_subgroup
is
dbo:
wikiPageWikiLink
of
dbr
:GIT_quotient
dbr
:Invariant_convex_cone
dbr
:Symmetric_cone
dbr
:Möbius_transformation
dbr
:Lie_algebra_representation
dbr
:Topological_group
dbr
:Flag_(linear_algebra)
dbr
:Classical_group
dbr
:Essentially_unique
dbr
:Reductive_group
dbr
:SL2(R)
dbr
:Unitary_group
dbr
:Compact_group
dbr
:Glossary_of_Lie_groups_and_Lie_algebras
dbr
:Principal_series_representation
dbr
:Projective_orthogonal_group
dbr
:Representation_theory
dbr
:General_linear_group
dbr
:Indefinite_orthogonal_group
dbr
:Differential_geometry_of_surfaces
dbr
:Iwasawa_decomposition
dbr
:Higher-dimensional_supergravity
dbr
:Projective_linear_group
dbr
:G-structure_on_a_manifold
dbr
:Discrete_series_representation
dbr
:Character_variety
dbr
:Zonal_spherical_function
dbr
:Zuckerman_functor
dbr
:Generalized_flag_variety
dbr
:Spin_group
dbr
:(g,K)-module
dbr
:Blattner's_conjecture
dbr
:Séminaire_Nicolas_Bourbaki_(1960–1969)
dbr
:Kuiper's_theorem
dbr
:Langlands_classification
dbr
:Gelfand_pair
dbr
:Mutation_(Jordan_algebra)
dbr
:Kazhdan–Lusztig_polynomial
dbr
:Kempf–Ness_theorem
dbr
:Quaternionic_discrete_series_representation
dbr
:Quadric_(algebraic_geometry)
dbr
:Plancherel_theorem_for_spherical_functions
dbr
:Representations_of_classical_Lie_groups
dbr
:List_of_things_named_after_Élie_Cartan
dbr
:Séminaire_Nicolas_Bourbaki_(1950–1959)
dbr
:Complex_hyperbolic_space
is
foaf:
primaryTopic
of
wikipedia-en
:Maximal_compact_subgroup
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International