In mathematics, particularly the study of Lie groups, a Dunkl operator is a certain kind of mathematical operator, involving differential operators but also reflections in an underlying space. Formally, let G be a Coxeter group with reduced root system R and kv an arbitrary "multiplicity" function on R (so ku = kv whenever the reflections σu and σv corresponding to the roots u and v are conjugate in G). Then, the Dunkl operator is defined by: where is the i-th component of v, 1 ≤ i ≤ N, x in RN, and f a smooth function on RN.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:authorlink |
|
dbp:first |
|
dbp:last |
|
dbp:wikiPageUsesTemplate | |
dbp:year |
|
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |