An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

unknown

Property Value
dbo:description
  • théorème d'analyse complexe (fr)
  • la teoremo de kompleksa analitiko, ke nekonstanta holomorfa funkcio sur kompleksa ebeno estas nebarita (eo)
  • теорема комплексного аналізу про те, що непостійні цілі функції є необмеженими (uk)
  • komplex analitikai tétel (hu)
  • mathematischer Satz in der Funktionentheorie (de)
  • twierdzenie analizy zespolonej o funkcjach całkowitych (pl)
  • teorema di analisi complessa (it)
  • tvrzení z oboru komplexní analýzy (cs)
  • teorema en l'anàlisi complexa que les funcions senceres no constants són il·limitades (ca)
  • theorem in complex analysis that nonconstant entire functions are unbounded (en)
  • 複分析中的定理 (zh)
dbo:wikiPageWikiLink
dbp:drop
  • hidden (en)
dbp:proof
  • If is an entire function, it can be represented by its Taylor series about 0: : where : and is the circle about 0 of radius . Suppose is bounded: i.e. there exists a constant such that for all . We can estimate directly : where in the second inequality we have used the fact that on the circle . But the choice of in the above is an arbitrary positive number. Therefore, letting tend to infinity gives for all . Thus and this proves the theorem. (en)
  • Given two points, choose two balls with the given points as centers and of equal radius. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since is bounded, the averages of it over the two balls are arbitrarily close, and so assumes the same value at any two points. (en)
  • Suppose for the sake of contradiction that there is a nonconstant polynomial with no complex root. Note that as . Take a sufficiently large ball ; for some constant there exists a sufficiently large such that for all . Because has no roots, the function is entire and holomorphic inside , and thus it is also continuous on its closure . By the extreme value theorem, a continuous function on a closed and bounded set obtains its extreme values, implying that for some constant and . Thus, the function is bounded in , and by Liouville's theorem, is constant, which contradicts our assumption that is nonconstant. (en)
  • Suppose for all in the complex plane, we can apply the Cauchy estimate to a disk center at any of any radius to obtain: . Let tend to , we obtain . Since This is true for all , is a constant. (en)
dbp:title
  • Proof (en)
  • Liouville's theorem (en)
  • Liouville’s Boundedness Theorem (en)
dbp:urlname
  • LiouvillesBoundednessTheorem (en)
  • LiouvillesTheorem (en)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:label
  • Liouville's theorem (complex analysis) (en)
  • مبرهنة ليوفيل (تحليل عقدي) (ar)
  • Liouvilleova věta (komplexní analýza) (cs)
  • Satz von Liouville (Funktionentheorie) (de)
  • Théorème de Liouville (variable complexe) (fr)
  • Teorema de Liouville (análisis complejo) (es)
  • Teorema di Liouville (analisi complessa) (it)
  • リウヴィルの定理 (解析学) (ja)
  • 리우빌 정리 (복소해석학) (ko)
  • Stelling van Liouville (nl)
  • Twierdzenie Liouville’a (analiza zespolona) (pl)
  • Teorema de Liouville (pt)
  • Теорема Лиувилля об ограниченных целых аналитических функциях (ru)
  • Теорема Ліувіля (комплексний аналіз) (uk)
  • Liouvilles sats (sv)
  • 刘维尔定理 (复分析) (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 4.0 International