About: L-function

An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization.

Property Value
dbo:abstract
  • En el ámbito de las matemáticas, una función L es una función meromorfa en el plano complejo, asociada con una de varias categorías de objetos matemáticos. Una serie L es una serie de Dirichlet, generalmente convergente en un semiplano, que puede dar lugar a una función L mediante una extensión analítica. La teoría de las funciones L se ha convertido en una parte muy substancial, y todavía con numerosas conjeturas, de la teoría de números contemporánea. En ella, se construyen amplias generalizaciones de la función zeta de Riemann y de las series-L para un carácter de Dirichlet, y aunque sus propiedades generales, en la mayoría de los casos todavía no han sido demostradas, se enumeran en una forma sistemática. (es)
  • In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the L-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between L-functions and the theory of prime numbers. (en)
  • En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration. (fr)
  • In teoria dei numeri analitica, con funzioni L si denotano alcuni particolari tipi di funzioni speciali definite sui numeri complessi che generalizzano la funzione zeta di Riemann, codificando informazioni aritmetiche e geometriche. Oltre alla stessa funzione zeta di Riemann, altre importanti classi di funzioni L sono le funzioni L di Dirichlet e le . (it)
  • 数学において、L-函数(L-function)とは複素平面上の有理型函数であり、いくつかの数学的対象のカテゴリから出てくる有理型函数に付帯している。L-級数(L-series)とは、解析接続を通してL-函数を導きうるディリクレ級数であり、大抵は半平面上で収束する。リーマンゼータ函数はL-函数の一例であり、L-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に記述されるものの、大半の場合、証明方法が見いだされていない。オイラー積を介して、L-函数と素数理論との間には深い関係がある。 (ja)
  • L-함수(L-function)는 복소평면에서 정의된 유리형 함수로 몇 가지 수학적 대상과 연결되어 있다. L-시리즈는 디리클레 급수로 복소 상반 평면에서 수렴하며 해석적 확장을 통해 L-함수를 만들 수 있다. L-함수 이론은 본질적이지만, 여전히 주로 추측에 의존하는 현대 해석적 수론의 일부이다. 이것에는 리만 제타 함수 및 디리클레 지표에 대한 L-시리즈의 일반화가 포함되어 있다. 그들의 일반적인 속성이 대부분 증명되지 않았고, 체계적으로 정리되지도 않았다. (ko)
  • In de analytische getaltheorie, een deelgebied van de wiskunde, is een L-functie een meromorfe functie op het complexe vlak, die is geassocieerd met één uit een aantal verschillende categorieën van wiskundige objecten. Een L-reeks is een machtreeks, die meestal convergent op het halfvlak is, en die via analytische voortzetting aanleiding geeft tot een L-functie. De theorie van L-functies is uitgegroeid tot een wezenlijk, maar nog steeds grotendeels onbewezen onderdeel van de hedendaagse analytische getaltheorie. L-functies betreffen constructies van brede veralgemeningen van de Riemann-zèta-functie en van L-reeksen voor een Dirichlet-karakter. Hun algemene eigenschappen, in de meeste gevallen nog steeds buiten het bereik van het wiskundig bewijs, worden op een systematische manier uiteengezet. (nl)
  • A teoria das Funções L se tornou uma sustentável e largamente parte da atual Teoria dos números. Nela contém, a grande generalização e a essência da teoria da Função zeta de Riemann e das Séries L para as Equações de Dirichlet que são construídas por meio desse estudo, e suas propriedades gerais, em muitos casos não necessitam de provas detalhadas, mas sim, as provas aparecem de maneira sistemática, de acordo com o uso dos sistemas citados acima. (pt)
  • L-функция — это мероморфная функция на комплексной плоскости, связанная с одним из нескольких типов математических объектов. L-ряд — это ряд Дирихле, который обычно сходится на полуплоскости, и который может быть аналитически продолжен до L-функции на всей комплексной плоскости. Теория L-функция стала очень существенной, хотя ещё пока во многом гипотетической, частью современной аналитической теории чисел. В ней построены широкие обобщения дзета-функции Римана и L-рядов для характеров Дирихле, а их общие свойства, в подавляющем большинстве случаев пока недоступны для доказательства в систематическом изложении (ru)
  • Inom matematiken är en L-funktion en över komplexa planet associerad till ett visst matematiskt objekt. En L-serie är en potensserie, vanligen konvergent i övre halvplanet, som kan fortsättas analytiskt till en L-funktion. L-funktionerna är viktiga inom analytisk talteori. Exempel på viktiga L-funktioner är Riemanns zetafunktion och Dirichlets L-funktion. (sv)
  • 在當代數論中,L函數是一類重要的複變數函數,蘊含重要的數論、算術代數幾何或表示理論信息,目前仍有大量待解的猜想。L函數是黎曼ζ函數的推廣,最簡單的例子是狄利克雷L函數,狄利克雷藉此研究等差數列中的素數密度。 許多L函數也有p進數版本。 L函數通常以無窮級數表示,有時也稱為L級數;這種級數通常只對虛部夠大的參數 方收斂。一如黎曼ζ函數,L級數往往能延拓為整個複數平面上的亞純函數或全純函數,並具備乘積表法及函數方程。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 245283 (xsd:integer)
dbo:wikiPageLength
  • 7956 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1029995903 (xsd:integer)
dbo:wikiPageWikiLink
dbp:first
  • A.F. (en)
dbp:id
  • L-function&oldid=19281 (en)
dbp:last
  • Lavrik (en)
dbp:title
  • L-function (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration. (fr)
  • In teoria dei numeri analitica, con funzioni L si denotano alcuni particolari tipi di funzioni speciali definite sui numeri complessi che generalizzano la funzione zeta di Riemann, codificando informazioni aritmetiche e geometriche. Oltre alla stessa funzione zeta di Riemann, altre importanti classi di funzioni L sono le funzioni L di Dirichlet e le . (it)
  • 数学において、L-函数(L-function)とは複素平面上の有理型函数であり、いくつかの数学的対象のカテゴリから出てくる有理型函数に付帯している。L-級数(L-series)とは、解析接続を通してL-函数を導きうるディリクレ級数であり、大抵は半平面上で収束する。リーマンゼータ函数はL-函数の一例であり、L-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に記述されるものの、大半の場合、証明方法が見いだされていない。オイラー積を介して、L-函数と素数理論との間には深い関係がある。 (ja)
  • L-함수(L-function)는 복소평면에서 정의된 유리형 함수로 몇 가지 수학적 대상과 연결되어 있다. L-시리즈는 디리클레 급수로 복소 상반 평면에서 수렴하며 해석적 확장을 통해 L-함수를 만들 수 있다. L-함수 이론은 본질적이지만, 여전히 주로 추측에 의존하는 현대 해석적 수론의 일부이다. 이것에는 리만 제타 함수 및 디리클레 지표에 대한 L-시리즈의 일반화가 포함되어 있다. 그들의 일반적인 속성이 대부분 증명되지 않았고, 체계적으로 정리되지도 않았다. (ko)
  • A teoria das Funções L se tornou uma sustentável e largamente parte da atual Teoria dos números. Nela contém, a grande generalização e a essência da teoria da Função zeta de Riemann e das Séries L para as Equações de Dirichlet que são construídas por meio desse estudo, e suas propriedades gerais, em muitos casos não necessitam de provas detalhadas, mas sim, as provas aparecem de maneira sistemática, de acordo com o uso dos sistemas citados acima. (pt)
  • Inom matematiken är en L-funktion en över komplexa planet associerad till ett visst matematiskt objekt. En L-serie är en potensserie, vanligen konvergent i övre halvplanet, som kan fortsättas analytiskt till en L-funktion. L-funktionerna är viktiga inom analytisk talteori. Exempel på viktiga L-funktioner är Riemanns zetafunktion och Dirichlets L-funktion. (sv)
  • 在當代數論中,L函數是一類重要的複變數函數,蘊含重要的數論、算術代數幾何或表示理論信息,目前仍有大量待解的猜想。L函數是黎曼ζ函數的推廣,最簡單的例子是狄利克雷L函數,狄利克雷藉此研究等差數列中的素數密度。 許多L函數也有p進數版本。 L函數通常以無窮級數表示,有時也稱為L級數;這種級數通常只對虛部夠大的參數 方收斂。一如黎曼ζ函數,L級數往往能延拓為整個複數平面上的亞純函數或全純函數,並具備乘積表法及函數方程。 (zh)
  • In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. (en)
  • En el ámbito de las matemáticas, una función L es una función meromorfa en el plano complejo, asociada con una de varias categorías de objetos matemáticos. Una serie L es una serie de Dirichlet, generalmente convergente en un semiplano, que puede dar lugar a una función L mediante una extensión analítica. (es)
  • In de analytische getaltheorie, een deelgebied van de wiskunde, is een L-functie een meromorfe functie op het complexe vlak, die is geassocieerd met één uit een aantal verschillende categorieën van wiskundige objecten. Een L-reeks is een machtreeks, die meestal convergent op het halfvlak is, en die via analytische voortzetting aanleiding geeft tot een L-functie. (nl)
  • L-функция — это мероморфная функция на комплексной плоскости, связанная с одним из нескольких типов математических объектов. L-ряд — это ряд Дирихле, который обычно сходится на полуплоскости, и который может быть аналитически продолжен до L-функции на всей комплексной плоскости. (ru)
rdfs:label
  • L-function (en)
  • دالة لامية (ar)
  • L-Funktion (de)
  • Función L (es)
  • Fonction L (fr)
  • Funzione L (it)
  • L-函数 (ja)
  • L-함수 (ko)
  • L-functie (nl)
  • L-функция (ru)
  • Função L (pt)
  • L-funktion (sv)
  • L-функція (uk)
  • L函數 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License