An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Dwork unit root zeta function, named after Bernard Dwork, is the L-function attached to the p-adic Galois representation arising from the p-adic etale cohomology of an algebraic variety defined over a global function field of characteristic p. The Dwork conjecture (1973) states that his unit root zeta function is p-adic meromorphic everywhere. This conjecture was proved by Wan (2000).

Property Value
dbo:abstract
  • In mathematics, the Dwork unit root zeta function, named after Bernard Dwork, is the L-function attached to the p-adic Galois representation arising from the p-adic etale cohomology of an algebraic variety defined over a global function field of characteristic p. The Dwork conjecture (1973) states that his unit root zeta function is p-adic meromorphic everywhere. This conjecture was proved by Wan (2000). (en)
dbo:wikiPageID
  • 50542350 (xsd:integer)
dbo:wikiPageLength
  • 1534 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 950798065 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, the Dwork unit root zeta function, named after Bernard Dwork, is the L-function attached to the p-adic Galois representation arising from the p-adic etale cohomology of an algebraic variety defined over a global function field of characteristic p. The Dwork conjecture (1973) states that his unit root zeta function is p-adic meromorphic everywhere. This conjecture was proved by Wan (2000). (en)
rdfs:label
  • Dwork conjecture (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License