This HTML5 document contains 123 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n18http://dbpedia.org/resource/Wikt:
dcthttp://purl.org/dc/terms/
n6http://ndpr.nd.edu/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n21https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n16http://doi.org/10.2307/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n20https://archive.today/20130415163751/http:/philmat.oxfordjournals.org/cgi/content/full/13/3/
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_first-order_theories
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
Subject Item
dbr:List_of_set_theory_topics
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
Subject Item
dbr:Russell's_paradox
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
Subject Item
dbr:Dana_Scott
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
dbo:knownFor
dbr:Scott–Potter_set_theory
Subject Item
dbr:Alternative_set_theory
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
Subject Item
dbr:Zu
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
Subject Item
dbr:ST_type_theory
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
Subject Item
dbr:Scott–Potter_set_theory
rdf:type
yago:System104377057 yago:Instrumentality103575240 yago:Whole100003553 yago:PhysicalEntity100001930 yago:Artifact100021939 dbo:Book yago:Object100002684 yago:WikicatSystemsOfSetTheory
rdfs:label
Scott–Potter set theory
rdfs:comment
An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician Dana Scott and the philosopher George Boolos. Potter (1990, 2004) clarified and simplified the approach of Scott (1974), and showed how the resulting axiomatic set theory can do what is expected of such theory, namely grounding the cardinal and ordinal numbers, Peano arithmetic and the other usual number systems, and the theory of relations.
dct:subject
dbc:Wellfoundedness dbc:Urelements dbc:Systems_of_set_theory
dbo:wikiPageID
6152392
dbo:wikiPageRevisionID
1106469129
dbo:wikiPageWikiLink
dbr:Type_theory dbr:Ordinal_number dbr:Set_builder_notation dbr:Mereology dbr:First_order_logic dbr:List_of_set_theory_topics dbr:Ontology dbr:New_Foundations dbr:Cardinal_number dbr:Isomorphic dbr:Model_theory dbr:Free_variable dbr:Set_(mathematics) dbr:Well-ordered dbr:Burali-Forti_paradox dbr:Well-ordering dbr:Zermelo–Fraenkel_set_theory dbr:Categorical_theory dbr:Forall dbr:Empty_set dbr:Morse–Kelley_set_theory dbr:Range_of_a_function dbr:Successor_function dbr:Paradox dbr:Dana_Scott dbr:ZFC dbr:Identity_(mathematics) dbr:Russell's_paradox dbr:Definite_description dbr:Number_system dbr:Existential_quantification dbr:Axiom_of_replacement dbr:Axiom_of_separation dbr:Axiom_schema_of_replacement dbr:Function_(mathematics) dbr:Foundation_of_mathematics dbr:Axiom_of_countable_choice dbr:Equinumerous dbr:Axiom_schema_of_separation dbr:Axiomatic_set_theory dbr:Axiom_of_choice dbr:Domain_of_a_function dbr:Hierarchy_(mathematics) dbr:Injective dbr:Scott's_trick dbr:Universe_of_discourse dbr:George_Boolos dbr:Inductive_set_(axiom_of_infinity) dbr:Natural_number dbr:First-order_logic dbr:Axiom_schema dbc:Wellfoundedness dbr:Von_Neumann–Bernays–Gödel_set_theory dbr:Relation_(mathematics) dbc:Urelements dbr:Axiom_of_infinity dbr:Uniqueness_quantification dbr:Axiom_of_foundation dbr:Axiom_of_extensionality n18:finite dbr:Infinity dbr:Urelement dbr:Cantor's_paradox dbr:Iff dbr:Willard_Quine dbr:Axiom_of_comprehension dbr:Proper_class dbr:Philosophy_of_mathematics dbr:Zermelo_set_theory dbr:Richard_Milton_Martin dbr:Foundations_of_mathematics dbr:S_(Boolos_1989) dbr:Von_Neumann_universe dbr:Transitive_relation dbr:Atomic_formula dbr:Actual_infinite dbr:Mathematician dbr:Consistency dbr:Mathematical dbr:Peano_arithmetic dbr:Philosopher dbr:Finite_axiomatization dbr:Naive_set_theory dbc:Systems_of_set_theory dbr:Peano_axioms
dbo:wikiPageExternalLink
n6:review.cfm%3Fid=2141 n16:2275116 n20:308
owl:sameAs
wikidata:Q7438244 freebase:m.0fsx5k n21:4ugoo
dbp:wikiPageUsesTemplate
dbt:Short_description
dbo:abstract
An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician Dana Scott and the philosopher George Boolos. Potter (1990, 2004) clarified and simplified the approach of Scott (1974), and showed how the resulting axiomatic set theory can do what is expected of such theory, namely grounding the cardinal and ordinal numbers, Peano arithmetic and the other usual number systems, and the theory of relations.
gold:hypernym
dbr:Collection
prov:wasDerivedFrom
wikipedia-en:Scott–Potter_set_theory?oldid=1106469129&ns=0
dbo:wikiPageLength
14057
foaf:isPrimaryTopicOf
wikipedia-en:Scott–Potter_set_theory
Subject Item
dbr:Scott-Potter_set_theory
dbo:wikiPageWikiLink
dbr:Scott–Potter_set_theory
dbo:wikiPageRedirects
dbr:Scott–Potter_set_theory
Subject Item
wikipedia-en:Scott–Potter_set_theory
foaf:primaryTopic
dbr:Scott–Potter_set_theory